Что такое лазер? И зачем он нужен?

Что такое лазер? И зачем он нужен?

Лазерные технологии Комментариев к записи Что такое лазер? И зачем он нужен? нет

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.

Сегодня лазеры получили такое широкое распространение в нашей жизни, что тяжело представить, что с момента их изобретения прошло всего 50 лет!

А если быть точнее, то первый лазер был создан 16 мая 1960 года физиком из Калифорнии Теодором Мейнманом (Theodore H. Maiman).  Этот лазер работал на кристалле рубина с резонатором Фабри-Перо, а в качестве источника накачки использовалась лампа-вспышка. Лазер работал в импульсном режиме на длине волны 694,3 нм.

В основу этого изобретения легла теория вынужденного излучения, выдвинутая  Эйнштейном в 1917 г. Согласно теории, кроме процессов спонтанного поглощения и излучения света существует возможность вынужденного (или стимулированного) излучения, когда можно «заставить» электроны излучить свет определенной длины волны одновременно.

Так что же такое лазер?

Ла́зер (от англ. LASER —  Light Amplification by Stimulated Emission of Radiation, что в переводе на русский означает «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее  энергию  накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

То есть, это луч света, испускаемый синхронными источниками, в узком направленном диапазоне. Такой чрезвычайно сконцентрированный световой поток.

Nci-vol-2268-300_argon_ion_laser

Как работает лазер?

Принцип работы лазера основан на  явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Типы лазеров:

Лазеры могут определяться на основе множества признаков, но чаще всего используется классификация

по принципу агрегатного состояния лазерного вещества:

  1. Газовые;
  2. Жидкостные;
  3. Лазеры на свободных электронах;
  4. Твердотельные.

По способу возбуждения лазерного вещества:

  1. Газоразрядные лазеры (в тлеющих, дуговых разрядах, в разрядах на полых электродах);
  2. Газодинамические лазеры (с созданием инверсий населенностей путем расширения горячих газов)
  3. Инжекционные, или диодные лазеры (с возбуждением за счет прохождения тока в полупроводнике);
  4. Лазеры с оптической накачкой (возбуждение с помощью лампы-вспышки, лампы непрерывного горения, другого лазера, светодиода);
  5. Лазеры с электронно-лучевой накачкой (специальные типы газовых и полупроводниковых лазеров)
  6. Лазеры с ядерной накачкой (с возбуждением посредством излучения из атомного реактора или в результате ядерного взрыва);
  7. Разные лазерные системы обладают разными уникальными свойствами и находят свое особенное применение.
  8. Химические лазеры (с возбуждением на основе химических реакций).

Применение лазеров.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

  1. Передача информации по стекловолокнам
  2. Лазерная обработка материалов:
    • маркировка и художественная гравировка
    • резка
    • сварка
  3. В микроэлектронике для прецизионной обработки материалов (резка полупроводниковых кристаллов, сверление особо тонких отверстий в печатных платах).
  4. для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости.
  5. Лазеры в медицине и биофотонике
    • лазерная хирургия
    • биофотоника и медицинская диагностика
    • офтольмология (лечение катаракта, отслоение сетчатки, лазерная коррекция зрения и др.).
  6. Косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).
  7. Термоядерная реакция с применением лазеров
  8. В военных целях:
    • как средство наведения и прицеливания.
    • ракетное оружие на основе лазерного излучения
  9. Астрономия:
    • Лидар: уточнил значения ряда фундаментальных астрономических постоянных и параметры космической навигации, расширил представления о строении атмосферы и поверхности планет Солнечной системы.
    • В астрономических телескопах, с адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.
  10. Использование лазеров в области научных исследований
  11. Голография и интерферометрия
  12. Метрология и измерительная техника. Измерение: расстояния (лазерные дальномеры), времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.
  13. Лазерная химия. Для запуска и анализа химических реакций Лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему.
  14. Лазеры в приборах и оборудовании
    • Устройства считывания штриховых кодов
    • В лазерной мыши и лазерной клавиатуре
    • Audio-CD, CD-ROM, DVD, Blu-ray disc
    • Лазерные принтеры
    • Лазерные пико-проекторы

 

 


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2016
Напишите нам:
laser.w@yandex.ru

Back to Top