Анализ свойств стекла при лазерном воздействии на основе модели «жидкость — деформированный вакансиями кристалл»

Научная библиотека Комментариев к записи Анализ свойств стекла при лазерном воздействии на основе модели «жидкость — деформированный вакансиями кристалл» нет

Ильин Д. В., Яковлев Е. Б. // ЖУРНАЛ: ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. ПРИБОРОСТРОЕНИЕ, Издательство: Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Санкт-Петербург), ISSN: 0021-3454eISSN: 2500-0381, Том: 51Номер: 4 Год: 2008 Страницы: 18-25, УДК: 539.213

С использованием модели „жидкость—деформированный вакансиями кристалл“ рассмотрены особенности кристаллизации кварцевых стекол при лазерном нагревании. Проанализирована зависимость вязкости стекла от концентрации содержащихся в нем примесей.
В литературе описано достаточно много моделей и методов, в той или иной степени объясняющих различные свойства стекла и их изменение при нагревании [1]. В предлагаемой работе с использованием модели „жидкость—деформированный вакансиями кристалл“ (ЖДВК) проведен анализ термодинамически неустойчивого по концентрации вакансий кислорода состояния стекла, которое возникает при лазерном нагревании. Показано, что при термодинамически неустойчивом состоянии стекла процесс его кристаллизации происходит со значительно большей скоростью, чем в равновесном состоянии. Определен режим лазерного воздействия, при котором происходит быстрая кристаллизация. Показана пригодность модели ЖДВК для анализа вязкости стекла и влияния на нее содержащихся в стекле примесей.
Кристаллизация стекол при лазерном локальном нагревании. В 1990-е гг. было обнаружено, что спекание пористых стекол и кристаллизация стекол при лазерном локальном нагревании происходят значительно быстрее, чем при нагревании в печи [2—4], что противоречит известным фактам о запаздывании изменения свойств стекол при быстром изменении температуры [1]. Объяснить эти явления в рамках существующих представлений о стекле до настоящего времени не удается.
В работе [5] была предложена модель структуры расплава металлов ЖДВК, сформулированная на основе вакансионной модели плавления. С помощью модели ЖДВК удалось определить критическую скорость охлаждения расплава без кристаллизации и объяснить возникновение вязкости при плавлении. В более поздней работе [6] продемонстрирована возможность применения этой модели для описания структуры и свойств переохлажденного расплава SiO2 при температурах выше температуры стеклования. С использованием модели ЖДВК было показано, что значительное снижение эффективной вязкости при быстром лазерном нагревании пористых стекол может быть объяснено большой концентрацией вакансий кислорода в материале каркаса пористого стекла, участвующем в вязком течении при спекании пор [7].
Основные положения модели ЖДВК. Существенное отличие модели ЖДВК от других моделей состоит в статистическом учете взаимодействия вакансий кислорода.


Влияние примесей на вязкость кварцевого стекла. Вязкость является важнейшим свойством стекла, она определяет особенности технологии, режимы формования и отжига, устойчивость изделий из стекла к необратимой деформации при их использовании в области высоких температур, время протекания процессов релаксации структуры и напряжения, замедленно-упругой и необратимой деформации [8]. Для того чтобы иметь возможность установить связь между временем и температурой вышеперечисленных процессов, необходимо знать температурную зависимость вязкости.
Объемная вязкость имеет место при деформациях, связанных с изменением плотности.
Она характеризует внутреннее трение (или механические потери) газов, жидкостей и твердых тел при всестороннем сжатии. Многие твердые тела, называемые вязкоупругими, в отличие от упруговязких не текут и не дают остаточных деформаций. В таких вязкоупругих твердых телах сдвиговая вязкость наблюдается лишь в микрообъемах, и ее можно назвать микровязкостью, которая наряду с объемной вязкостью служит одной из причин упругого последействия и релаксаций напряжения в некристаллических твердых телах [4].
Классические модели вязкости стекол основаны на представлениях о переключении связей между соседними атомами под влиянием флуктуации энергии теплового движения.
Речь идет о флуктуационном разрыве связи с образованием пары атомов с ненасыщенными вакантными связями. Аналогичным образом может произойти разрыв соседней химической связи с образованием новых двух ненасыщенных связей, одна из которых насыщается, вступая в реакцию с возникшей ранее соседней ненасыщенной связью; в результате происходит своего рода перескок через барьер — переключение связи.
Таким образом, ненасыщенные атомы, перемещаясь с атома на атом, удаляются друг от друга. Если к стеклу приложено сдвиговое напряжение, то переключение связи с атома на атом более вероятно в направлении силы. Благодаря таким переключениям произойдет сдвиг участка стекла в направлении силы, т. е. в конечном счете будет иметь место вязкое течение стекла [6].


Показано, что особенности протекания процессов в стекле при лазерном воздействии вполне могут быть объяснены с использованием модели структуры стекла „жидкость — деформированный вакансиями кристалл“.

Полное содержание статьи: http://pribor.ifmo.ru/file/journal/137.pdf

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.w@yandex.ru

Back to Top