Лазерно-индуцированный процесс оттаивания биологических тканей после импрегнирования наночастицами с аномально высоким фототермическим эффектом

Научная библиотека Комментариев к записи Лазерно-индуцированный процесс оттаивания биологических тканей после импрегнирования наночастицами с аномально высоким фототермическим эффектом нет

Гуляев П.Ю., Омельченко А.И. // Физико-математические науки, № 11 (53) Часть 4, с: 146-152, DOI: 10.18454/IRJ.2016.53.077

Фототермический эффект лазерного излучения на замороженных биотканей имеет важное значение для целого ряда современных технологий. Например, ткань криоконсервации имеет потенциал для криохирургии и других видов медицинской обработки с использованием замораживания и лазерного нагрева. В настоящем исследовании рассмотрено применение биофункциональные наночастиц с высоким фототермическим эффектом, полученных методом самораспространяющегося высокотемпературного синтеза (СВС), для лазерного нагрева замороженных биотканей. Стабилизированные крахмалом водные растворы наночастиц KxMoO3 и HxMoO3 демонстрирующие высокий уровень поглощения лазерного излучения с длиной волны 1,56 мкм были применены для импрегнирования свиной кожи. Лазерное нагревание замороженног уха свиньи о модифицированного наночастицами оксидных бронз позволяет контролировать температуру облучаемой ткани до +1 ° С. Пропитка подкожной ткани наночастицами с высоким фототермическим эффектом может быть использована для процедуры лазерно-индуцированного оттаивания замороженной ткани уха.

Описание на английском языке:

Laser-induced process of defrosting in biological tissues after impregnation by nanoparticles with abnormal high photothermal effect
Photothermal effect of laser radiation on frozen biotissues is essential for a number of modern technologies. For example, tissue cryopreservation has potentials for cryosurgery and other types of medical treatment using tissue cooling, frizzing and laser heating. In the present study the self-propagating high temperature (SHT) synthesis and application of biofunctional nanoparticles (NPs) using high photo-thermal effect for laser heating of frozen biotissues are considered. Starch stabilized aqueous solutions of KxMoO3 and HxMoO3 NPs demonstrate high absorption of laser radiation with the wavelengths of 1.56 μm being applied to pig skin containing small amounts of NPs. For hydrogen-molybdenum oxide bronze the thermal effect on pig skin is higher at 1.44 μm than at 1.56 μm. Laser heating of frozen pig’s ear previously modified by bronze NPs injection allows controlling temperature of irradiated tissue up to +1 oC. Subcutaneous tissue impregnation with NPs of the metallic oxide bronzes can be used for careful laser treatment of frozen ear tissue.

Laser irradiation of frozen biological tissue results in gradual thawing of crystal ice [5]. But the process can be hardly controlled because of the high damage degree of the re-crystallization [7,25]. In the work [26], authors used theoretical approach for numerical study of the thawing process in biological tissue induced by laser radiation. Recently [22] showed that laser radiation of the iron oxide starch stabilized NPs embedded into the dense cartilaginous tissue does not cause additional structural alterations therein.
It is well known that new phase formation initiates near impurities, e.g. bubbles, small particles and others [16]. Thus, NPs impregnation into hydrated biological tissue should modify crystallization of interstitial water during its laser thawing. Although the fundamental problem of pure crystal ice thawing has been solved by Josef Stefan in 1889 [24], the controllable thawing of ice in biotissues is still an urgent problem. To demonstrate effectiveness for laser thawing of frozen biological tissue impregnated with NPs and safety of its laser heating we developed the new absorptive adds on the base of the metallic oxide bronzes.
The work aims at the synthesis of metallic oxide bronze NPs using SHT technique and studying the influence of high photothermal IR laser effect of these NPs on the frozen biotissue thawing.

Then the tissue samples of pig’s ear were placed in freezer for 2-3 hours. After that they were taken from freezer and kept at an ambient temperature until their temperature reached -2 — 0 0C. Then the samples were irradiated by laser beam with Gaussian intensity distribution of radiation. Various regimes of laser radiation of 1.56 and 1.44 μm wavelengths were examined: power of laser radiation of 5 W and 2 W in repetitive pulse regime (pulse duration 400 ms, repetition rate 0.7 Hz) were used for laser heating of the frozen tissue samples. Temperature of the skin and subcutaneous tissues was controlled by Testo 875 thermal vision system.

Полное содержание статьи: http://research-journal.org/wp-content/uploads/2011/10/11-4-53.pdf#page=146

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.

© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:

Back to Top