Спектры фотолюминесценции лекарственных препаратов при возбуждении ультрафиолетовым лазерным излучением

Лазеры в медицине, Научная библиотека Комментариев к записи Спектры фотолюминесценции лекарственных препаратов при возбуждении ультрафиолетовым лазерным излучением нет

Горелик В.С., Умаров М.Ф. // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 6-3. – С. 436-440; УДК 535.361

Разработана методика для исследования спектров фотолюминесценции лекарственных препаратов при возбуждении ультрафиолетовым лазерным излучением. Методика основана на волоконно-оптической регистрации спектров фотолюминесценции с использованием малогабаритного спектрометра и системы обработки данных, позволяющей провести сравнение анализируемого спектра со спектром эталонного вещества. Возбуждение спектров фотолюминесценции осуществлялось с использованием импульсно-периодического ультрафиолетового лазера с длиной волны генерации 266 нм. Исследованы спектры фотолюминесценции аспирина, анальгина, цитрамона и парацетамола различных производителей. Построены корреляционные спектры фотолюминесценции, позволяющие устанавливать различия в составе, структуре и технологии производства лекарственного препарата даже при близости вида их спектров.

THE PL SPECTRA OF DRUGS WHEN EXCITED BY ULTRAVIOLET LASER RADIATION
The methodology developed for the study of photoluminescence spectra of drugs when excited by ultraviolet laser radiation. The technique is based on fiber-optical detection of the photoluminescence spectra using a compact spectrometer and a data processing system that allows you to make a comparison of the analyzed spectrum with the spectrum of the reference substance. The excitation of photoluminescence spectra was carried out using pulsed ultraviolet laser with a wavelength of 266 nm generation. Photoluminescence of aspirin, analgin, aspirin and paracetamol by various manufacturers. Built photoluminescence correlation spectra, allowing to establish differences in composition, structure and production technology of the drug even with the proximity of their spectra.

Биоактивные препараты включают в себя большой класс веществ, оказывающих сильное воздействие на молекулярном уровне на биологические структуры и живые организмы. К ним относятся, в частности, различные фармацевтические препараты, стимуляторы процессов жизнедеятельности, аминокислоты, токсические вещества и др. Для эффективного использования биоактивных препаратов необходимо обеспечение соответствия их молекулярной структуры и состава номинальным препаратам, воздействие которых на биологические структуры и живые организмы надёжно установлено.

В связи с этим возникает задача установления на количественном уровне степени соответствия молекулярной структуры и состава реальных образцов, используемых в медицине, пищевой промышленности, сельском хозяйстве и других областях, с номинальными биоактивными препаратами, характеристики которых известны и введены в базу данных. Для решения такой задачи могут быть использованы спектроскопические методы, включая флуоресцентную спектроскопию, метод комбинационного рассеяния света, нелинейно-оптической спектроскопии и т.д. [1, 2]. Для однозначного ответа на вопрос о степени соответствия молекулярной структуры и состава анализируемого реального объекта номиналу, характеристики которого присутствуют в базе данных, необходимо провести на количественном уровне сравнение спектров анализируемого и номинального объекта.

Целью данной работы явилось сравнения спектров фотолюминесценции и коэффициентов корреляции анализируемых и номинальных биоактивных препаратов на примере коммерческих фармацевтических препаратов, различных производителей.

Материалы и методы исследования

В качестве объектов исследования нами были выбраны типичные фармацевтические препараты (цитрамон, анальгин, аспирин и парацетамол). В структурах всех исследованных веществ, присутствуют ароматические кольца, что приводит к фундаментальному электронному поглощению этих соединений в среднем ультрафиолетовом диапазоне. Соответственно в этих веществах наблюдается фотолюминесценция в фиолетово-красном диапазоне при возбуждении образцов коротковолновым (266 нм) электромагнитным излучением.
Для возбуждения и регистрации спектров фотолюминесценции использовалась волоконно-оптическая методика [3, 4]. Принципиальная схема экспериментальной установки приведена на рис. 1.

В качестве источника возбуждающего ультрафиолетового излучения использовалась четвёртая гармоника (266 нм) лазера на алюмоиттриевом гранате, генерирующего импульсно-периодическое излучение с длиной волны 1064 нм, со средней мощностью генерации 10 мВт, с частотой следования импульсов 3000 Гц при их длительности 10 нс. Пиковая плотность мощности возбуждающего ультрафиолетового излучения на поверхности анализируемого препарата составляла 105 Вт/см2. Небольшое количество анализируемого вещества (12, рис. 1) в виде таблетки или жидкости помещалось в кювету (13, рис. 1). Кварцевый световод (11, рис. 1) использовался для подведения ультрафиолетового излучения к веществу и для отведения, возникающего в анализируемой пробе флуоресцентного излучения к малогабаритному спектрографу (14, рис. 1) типа FSD-8. При этом пространственное разрешение на поверхности анализируемой пробы составляло 0,1 мм. Используемый тип малогабаритного спектрографа позволял осуществлять регистрацию спектров фотолюминесценции исследуемых веществ в диапазоне 200 – 1000 нм при экспозициях 0,01-0,1 с. От миниспектрометра FSD-8 цифровая информация о спектре фотолюминесценции излучения передавалась на компьютер. После компьютерной обработки нами были построены нормированные спектры фотолюминесценции фармацевтических препаратов.

Результаты исследования и их обсуждение

Нами были зарегистрированы спектры фотолюминесценции следующих фармацевтических препаратов: цитрамона, анальгина, аспирина и парацетамола. Рис. 2 иллюстрирует вид спектров фотолюминесценции таблетки цитрамона от нескольких точек на поверхности образца, отстоящих друг от друга на расстоянии 3-4 мм. Как видно из этого рисунка, молекулярный состав анализируемой таблетки цитрамона оказывается различным для областей поверхности, расположенных на расстоянии несколько миллиметров друг от друга. Это свидетельствует о неоднородности молекулярного состава анализируемой пробы.

Полное содержание статьи: https://applied-research.ru/ru/article/view?id=9625


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2016
Напишите нам:
laser.w@yandex.ru

Back to Top