Квантовая связь без лишнего шума

Новости науки и техники Комментариев к записи Квантовая связь без лишнего шума нет

Ученые из исследовательского центра Toshiba в Кембриджском университете, кажется, сумели совершить очередной прорыв в квантовой связи. Об уровне прорыва говорит то, что их статья удостоилась публикации в топовом Nature. Авторы статьи утверждают, что им удалось передавать зашифрованные при помощи квантового распределения ключей (quantum key distribution, QKD) данные по обычному коммерческому оптоволокну на 550 километров с «управляемым уровнем шума» — и это без использования квантовых повторителей. То есть им удалось превзойти некий предел соотношения «толщины» канала и расстояния передачи данных.

Чтобы понять, насколько это важно, давайте разберемся, что такое квантовое распределение ключей, о котором говорится в новой работе.
Обычно, когда речь заходит о квантовой криптографии, прибегают к трем персонам – Алисе и Бобу, которые хотят приватно пообщаться, и Еве, которая хочет их подслушать. Существует теорема Вернама, согласно которой Ева никогда не сможет прочесть их переписку, если Алиса и Боб разделят ключ, длина которого равна длине их сообщений. Но, зная это, все правильные шпионы обычно стремятся скрытно скопировать ключ в тот самый момент, когда его распределяют Алиса и Боб.

Тут нам на помощь приходит квантовый мир, в котором существует запрет на клонирование (читай: копирование) неизвестного квантового состояния. Да-да, тут речь идет именно о той самой квантовой запутанности. Исходя из этого в 1984 году Чарльз Беннет и Жиль Брассар предложили систему квантового распределения ключей, разработав протокол BB84.

Что это означает в реальности? По факту Алиса отправляет Бобу отдельные фотоны, которые имеют, например, один из четырех видов поляризации (вертикальная, горизонтальная и две диагональных).

Например, вертикальная и горизонтальная поляризация кодируют «ноль» и «единицу» в одном методе измерения, а две диагональных поляризации отвечают «нулю» и «единице» в другом методе измерения. Затем Боб случайным образом выбирает способ измерения состояния фотона. Лишь если способ приготовления и измерения фотона совпадают, Алиса и Боб записывают полученный бит в секретный ключ шифрования. Вместо поляризации можно использовать изменение фазы фотона.

Но есть несколько фундаментальных проблем. Во-первых, это проблема устройства, способного отправлять одиночные фотоны. На практике в коммерческих линиях квантовой связи часто пользуются очень слабыми лазерными импульсами, хотя прогресс в разработке однофотонных источников тоже достигнут. А во-вторых, так как передача сигнала осуществляется отдельными фотонами, возникает проблема шума. Оптоволокно по-разному нагревается (тепловые фотоны), может быть по-разному изогнуто и так далее.

Поэтому на нынешний момент существуют аппаратно-независимые пределы пропускной способности квантовой связи в зависимости от расстояния. На практике это 1,26 мегабита в секунду на расстояние 50 километров по стандартному кабелю и — сравните — 1,16 бита в час (!) на расстояние в 404 километра (символично) по специальному кабелю с ультранизкими потерями данных.

Вот вам пример: в прошлом августе китайские исследователи опубликовали в том же Nature результаты эксперимента по реализации протоколов квантовой криптографии между космосом и Землей. Тогда со спутника «Мо Цзы» удалось передать на расстояние в 1200 километров более 300 килобайт секретного ключа. Это стало возможно потому, что и околоземное пространство, и верхние слои атмосферы почти не шумят. По обычному оптоволокну на 1200 километров один бит просеянного ключа передавали бы около шести миллиардов лет.

Чтобы передавать сигнал на более далекое расстояние, специалисты по квантовой связи работают над квантовыми повторителями. Можно подумать, что это — квантовые ретрансляторы, однако на самом деле принцип их работы совсем другой.

Мы уже говорили, что в квантовом мире невозможно клонировать квантовое состояние. А ведь обычный ретранслятор электромагнитного сигнала (радио, например), делает именно это: воспринимает сигнал и воспроизводит его заново. С квантовым посланием так обращаться нельзя. Поэтому квантовый повторитель – это скорее обычный квантовый компьютер, который способен хранить исходный сигнал (кубит). Однако пока что квантовые повторители на практике – дело будущего.

А вот теперь вернемся к статье кембриджцев.

Как мы помним, Алиса у нас отправляет фотоны Бобу. То есть у Алисы есть лазер, у Боба – детекторы фотонов. Однако авторы предлагают ввести в уравнение Чарли, который расположен посередине. Чарли — «на аутсорсе», ему отдаются детекторы. И Алиса, и Боб генерируют фазово-рандомизированные оптические поля, которые объединяются у Чарли. Поля, передаваемые с той же случайной фазой, являются «близнецами» и могут быть использованы для выделения квантового ключа.

В такой схеме «двупольного» квантового распределения ключей (twin field quantum key distribution, TF-QKD) существует такая же зависимость потери сигнала от расстояния, однако за счет этого хитрого хода удается сохранять приемлемый шум еще на протяжении 550 километров. Действительно, прорыв!

Дело в том, что в предложенной схеме «шум» представляет собой дрифт (сползание) фазового сдвига, которое можно компенсировать, если станция Чарли будет работать фазовым модулятором, корректируя дрифт. Это делает возможным квантовую связь «с управляемым шумом» на расстояние в полтысячи километров по обычному оптоволокну, что было просто невозможно без использования квантовых повторителей.

Источник: https://nplus1.ru/blog/2018/05/11/quantum-key-distribution

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top