Висмут и германий помогут лазерам излучать в новом диапазоне

Новости науки и техники Комментариев к записи Висмут и германий помогут лазерам излучать в новом диапазоне нет

Российские физики разработали новый тип оптического волокна (стеклянного волокна, содержащего висмут) для лазеров, излучающих в области 1,6–1,8 микрометров, и изучили его уникальные характеристики. Работа проводится впервые в мире, а ее результаты опубликованы в журнале IEEE Journal of Selected Topics in Quantum Electronics. Исследование поддержано грантом Российского научного фонда (РНФ).

Laser-Active Fibers Doped With Bismuth for a Wavelength Region of 1.6–1.8 μm

The light sources operating in the spectral range 1600-1800 nm are of great interest because of a number of potential scientific and practical applications. This stimulates a search for effective laser media for this wavelength region. Recent progress in the studying of bismuth (Bi)-doped fibers is related to the development of Bi-doped high-germania-core fibers for the mentioned wavelength region. This paper is concerned with the current state of the art in the research field of this kind of the laser-active fibers. The fabrication and spectroscopic properties of the Bi-doped high-germania-core fibers are described. The photo-induced bleaching and recovery stimulated by thermal treatment of luminescent centers in these fibers are presented. The review also includes the description of the basic parameters of the optical devices (continuous wave (CW) and pulsed lasers, amplifiers, superluminescent sources) developed using Bi-doped high-germania-core fibers.

https://ieeexplore.ieee.org/document/8279401/

«Благодаря компактности, надежности, высокому качеству выходного излучения в настоящее время особую популярность получили волоконные лазеры, в которых в качестве активной среды используется оптоволокно с различными добавками химических элементов, преимущественно редкоземельных металлов. В таких лазерах излучение распространяется в области размером 2–10 микрометров, что позволяет получать высокую яркость. Совместно с Институтом химии высокочистых веществ РАН, мы создали новый тип волокна для лазеров, генерирующих в новых спектральных диапазонах, недоступных для волоконных лазеров с редкоземельными ионами», – рассказал Сергей Фирстов, кандидат физико-математических наук и старший научный сотрудник Научного центра волоконной оптики РАН.

Сергею Фирстову и его коллегам удалось этого добиться при помощи введения химического элемента висмута в оптоволокно с высоким содержанием оксида германия. Висмут при нормальных условиях – блестящий серебристый металл с розоватым отблеском. При добавке этого элемента оптоволокно наделяется уникальными способностями, которые позволяют усиливать и генерировать оптическое излучение на различных длинах волн, в данном случае от 1,6 до 1,8 микрометров (для сравнения: толщина человеческого волоса равна примерно 40 микрометров). Это излучение относится к ближнему инфракрасному диапазону, которое не видно человеческим глазом.

Физики установили, что оптоволокно приобретает необходимые свойства при введении ионов висмута в оптоволокно с высоким количеством оксида германия. Только в этом случае ион висмута, встраиваясь вблизи дефекта сетки стекла, будет работать как активный центр. Авторы работы интенсивно занимаются экспериментальными исследованиями свойств таких волокон, обращая внимание на интересные особенности, — такая работа проводится впервые в мире. В частности, недавно был обнаружен новый оптический эффект – обесцвечивания волокна под воздействием лазерного излучения и его обратимость при нагреве.

Сейчас из данного типа волокна созданы лазеры в области 1,7 микрометров с мощностью более 2 ватт и КПД более 30%. Разработка не имеет зарубежных аналогов. До сих пор остается неизвестным фундаментальное ограничение характеристик таких лазеров. Ученые считают, что эти характеристики, вполне вероятно, можно улучшить, совершенствуя технологию их изготовления.

«Волоконные лазеры генерируют в определенных областях длин волн, при этом область длин волн 1,6–1,8 микрометров оставалась почти неосвоенной, – подытоживает Сергей Фирстов. – Добавление висмута в стеклянную матрицу с высоким содержанием оксида германия стало прорывом, позволившим реализовать новый тип световодов, который можно использовать в качестве активной среды для создания усилителей и лазеров, работающих в этом спектральном диапазоне».

Источник: https://indicator.ru/news/2018/05/26/optovolokonniy-laser/

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top