Российские ученые создали лазер-трансформер

Российские ученые создали лазер-трансформер

Новости науки и техники Комментариев к записи Российские ученые создали лазер-трансформер нет

Ученые Томского политехнического университета в составе международного исследовательского коллектива создали экономичный фемтосекундный лазер, способный плавно перестраивать длину волны своего излучения во всем видимом диапазоне. Результаты этого исследования опубликованы в научном журнале «Photonics Research».

Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation

The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.

https://www.osapublishing.org/prj/abstract.cfm?uri=prj-5-6-750

Генерация излучения на произвольной длине световой волны – фундаментальная задача современной фотоники. Известные решения этой задачи основаны на использовании нелинейных эффектов в оптических кристаллах и волокнах.

В статье для «Photonics Research» авторы показали, что можно легко организовать плавную перестройку длины волны у лазерного излучения, используя фотон-кристаллические волокна с переменным диаметром центрального канала световода.

© Иллюстрация РИА Новости . Алина Полянина Так художник представил себе перестройку длины волны излучения в волоконном лазере

© Иллюстрация РИА Новости . Алина Полянина
Так художник представил себе перестройку длины волны излучения в волоконном лазере

По словам ученого, обычно лазеры излучают в узкой спектральной полосе, жестко заданной свойствами среды. И для получения красного или зеленого излучения приходится либо создавать новый лазер, либо использовать технологии конверсии имеющегося излучения. Эти технологии имеют фундаментальные ограничения по диапазону перестройки и минимальной интенсивности излучения на входе в преобразователь или сопряжены с возникновением мощных шумов.

«Нас интересовало решение, исключающее минусы известных подходов, и при этом простое и дешевое. Мы собрали волоконный лазер, генерирующий на выходе световые импульсы с центральной длиной волны 1.04 микрометров, длительность которых меняется от пикосекунды до 50 фемтосекунд. Излучение лазера заводилось в кусочек специально профилированного фотон-кристаллического волокна (ФКВ)», — рассказал доцент Исследовательской школы физики высокоэнергетических процессов ТПУ Роман Егоров.

ФКВ – это специальный класс оптических волокон, центральная область которых (где и идет свет), окружена упорядоченной структурой пустотелых или заполненных специальным материалом микро-канальцев. Если центральный канал сделать сужающимся и правильно подобрать материал волокна, то спектр излучения на выходе будет очень сильно зависеть от длительности и интенсивности импульсов на входе.

Именно это обстоятельство и использовали авторы статьи. Меняя длительность и энергию импульсов на входе, они легко сумели управлять балансом нелинейных и дисперсионных процессов внутри волокон. По словам Романа Егорова, импульсы выходного излучения имели низкую зашумленность и легко перестраивались в диапазоне длин волн 420-600 нанометров – то есть, перекрывали почти весь видимый диапазон.

«Как известно, методы спектральной конверсии излучения очень энергозатратны. Мы же сразу вышли на КПД порядка 1-2%, хотя фокусировались не на энергетике, а на ширине диапазона перестройки. То есть, наш подход имеет потенциал для наращивания энергетической эффективности, как минимум, до уровня распространенных методов, но при этом лишен их фундаментальных недостатков», — считает Роман Егоров.

Плавная перестройка длины волны излучения на сегодня крайне востребована в лазерной микроскопии, например, для биоимиджинга, – метода, позволяющего наблюдать микроструктуру живой ткани с помощью флуоресцентных красителей, позволяющая увидеть гораздо более мелкие детали исследуемого объекта. При подсветке определенной длиной волны, начинается флуоресценция красителей. Но для этого нужно очень точно подстроить длину волны подсветки, чтоб попасть в спектр поглощения красителя. Поэтому так необходимо иметь лазер, который позволил бы подстраивать длину волны под конкретное вещество. Таким образом можно получить детализированную картину живой клетки, которую другим способом увидеть невозможно.

Развитие методов визуализации внутренних структур биологических объектов является одной из приоритетных задач как биологии, так и физики. Изучение биологических структур на микроскопическом уровне дает возможность раскрыть принципы и механизмы функционирования живых организмов. Область применения данных методов достаточно широка и включает такие актуальные направления, как эмбриология, нейробиология, онкология и многие другие.

РИА Новости https://ria.ru/science/20180507/1519885836.html

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top