Эксперименты на МКС помогли разобраться во взаимодействии пыли и плазмы

Новости науки и техники Комментариев к записи Эксперименты на МКС помогли разобраться во взаимодействии пыли и плазмы нет

Группа исследователей при участии президента РАН Владимира Фортова впервые экспериментально показала, как изменение электрического поля влияет на форму волн колебаний плотности. Для этого ученые воспользовались установкой Plasmakristall-4 (PK-4), установленной на борту Международной космической станции и находящейся в условиях практически полной невесомости (ускорение на борту МКС порядка 10−3g). Плазма на этой установке создается внутри стеклянного цилиндра диаметром 3 сантиметра и длиной около 20 сантиметров. В качестве рабочего вещества использовался газообразный неон, разреженный до давления порядка 40 паскалей (4×10−4 атмосфер), а микрочастицы пыли представляют собой пластиковые шарики диаметром около трех микрометров и массой примерно 10−11 грамм. В одном кубическом сантиметре установки находилось примерно сто тысяч микрочастиц. В ходе эксперимента частицы подсвечивались зеленым лазером, а их положение отслеживалось с помощью двух видеокамер с частотой 70 в секунду.

Поставленный учеными эксперимент выглядел следующим образом. На первом шаге микрочастицы захватывались с помощью радиочастотного разряда и помещались в плазму. Затем через плазму пропускался разряд постоянного тока силой около 0,5 миллиампер, и одновременно выключался радиочастотный разряд. Наконец, на последнем шаге ученые меняли полярность постоянного тока, сохраняя его силу. Продолжительность второго этапа составляла примерно две секунды, третьего — восемь секунд. При обеих полярностях постоянного тока в пыли возникали акустические волны. Фазовая скорость волн в «голове» волны (в направлении, в котором дрейфуют частицы под действием электрического поля) примерно в два раза превышала фазовую скорость в «хвосте»; теоретические оценки показали, что изменение фазовой скорости можно полностью объяснить влиянием электрического поля, направленного вдоль оси цилиндра.

Интересно, что после смены полярности тока направление волн колебаний плотности не изменялось, хотя частицы начинали дрейфовать в противоположном направлении. Физики считают, что это связано с потоками собственно плазмы, которые компенсировали возникающие силы. Кроме того, после смены полярности в «голове» волны возникали новые гребни — дополнительные области с повышенной плотностью микрочастиц.

Полное содержание статьи: https://nplus1.ru/news/2018/08/09/ISS-plasma

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top