Новосибирские ученые предложили метод протонного ускорения частиц, который успешно применили в ЦЕРН

Лазерные технологии, Новости науки и техники Комментариев к записи Новосибирские ученые предложили метод протонного ускорения частиц, который успешно применили в ЦЕРН нет

В Европейском центре ядерных исследований (ЦЕРН) впервые удалось ускорить электроны с помощью волны, создаваемой сгустком протонов в плазме. Электроны с начальной энергией 19 МэВ пролетели в плазме 10 метров и увеличили энергию более чем в 100 раз — до 2 ГэВ.

Новый способ позволит уменьшить размеры, а значит и затраты на строительство будущих установок. В разработке принимали участие специалисты из 10 стран мира, в том числе и ученые Института ядерной физики имени Г. И. Будкера, которые создали теоретическую модель и показали возможность успешного применения метода протонного ускорения. Результаты опубликованы в журнале Nature.

Традиционный способ ускорения частиц до высоких энергий предполагает использование высокочастотных резонаторов, проходя через которые, пучки ускоряются под действием электромагнитного поля.

В 2013 году в ЦЕРН началась работа над проектом AWAKE (Advanced proton-driven plasma WaKefield Acceleration Experiment»). Его основная задача — экспериментально подтвердить возможность использования альтернативного метода, при котором частицы летят сквозь плазму и ускоряются под действием волн, возникающих в ней.

«Команда Института ядерной физики отвечала за моделирование физических процессов в эксперименте, — комментирует лидер проекта AWAKE Эдда Гшвентер, — это позволило определить, как нам строить установку, какие у нее будут параметры, какие инженерные особенности. Физики из Новосибирска помогли найти ответы на вопросы о том, как будет себя вести пучок протонов в плазме, как будет происходить процесс самомодуляции. На основе этих расчетов мы и построили установку».

Теоретический координатор проекта AWAKE — главный научный сотрудник Института ядерной физики СО РАН, доктор физико-математических наук, профессор Константин Лотов. Он отмечает, что идея кильватерного ускорения в плазме возникла еще в 70-х годах прошлого века.

«Это название появилось из-за аналогии со следом на поверхности воды, который остается за кормой идущего судна. Пучок-драйвер, проходя через плазму, создает в ней волну и таким образом разгоняет электроны, летящие следом. Раньше в качестве драйвера использовались пучки электронов или мощные лазерные импульсы. Мы же нашли способ использовать протонный пучок, в котором в тысячи раз больше энергии, чем в самых лучших электронных и лазерных драйверах. За протонным драйвером электроны летят в одной длинной плазменной секции — и это довольно простая конструкция. Другие же драйверы надо периодически заменять на «свежие», делать много небольших секций — это гораздо сложнее, поэтому наш вариант ближе к практическому воплощению», — поясняет Константин Лотов.

По его словам, новая технология позволит при существующих размерах ускорителей примерно в сто раз увеличить энергию электронных и позитронных пучков, доступных в эксперименте.

«Следующий шаг в проекте AWAKE, — пояснила Эдда Гшвентер, — работа над качеством пучка и над возможными физическими приложениями использования этого метода… В этом нам также понадобятся работы института имени Будкера, так как у нас очень много вопросов. Как много мы сможем ускорить частиц? Какой длины должна быть плазменная ячейка? Сколько должно быть таких ячеек? Каким должен быть между ними зазор? Это важно, во-первых, для обоснования следующего этапа проекта, во-вторых, для прогнозирования успешности будущих экспериментов».

Для проведения эксперимента AWAKE используется синхротрон SPS – один из ускорителей, обеспечивающих протонами Большой адронный коллайдер. Протоны из SPS, имеющие энергию 400 ГэВ, выпускаются в так называемую плазменную секцию, в которой находится газ рубидий, нагретый до 200°С. Одновременно с этим лазерный импульс выбивает электроны из атомов газа и превращает его в плазму. Сквозь плазму летит протонный пучок, который и создает в ней колебания – кильватерные волны. Эти волны разгоняют электроны, которые выпускаются в плазму с относительно низкой энергией под определенным углом. На другом конце плазменной секции находится дипольный магнит, который направляет ускоренные электроны на детектор.

Сила, с которой ускоритель разгоняет частицы, называется темп ускорения и измеряется в мегаэлектронвольтах на метр (МэВ/м). Чем больше темп ускорения, тем короче требуется ускоритель. Самый большой линейный коллайдер SLC, в котором для ускорения частиц использовались ВЧ-резонаторы, имел номинальный темп ускорения 17 МэВ/м. Он работал в Стэндфорте с 1989 по 1998 год.

В AWAKE удалось ускорить электроны до 2 ГэВ на расстояние 10 м, а это значит, что темп ускорения в среднем составляет 200 МэВ/м. Ученые надеются, что в будущем удастся достичь показателя 1000 МэВ/м.

Как отметила руководитель пресс-службы ИЯФ СО РАН Алла Сковородина, с самого начала работа над проектом AWAKE шла очень быстро. Инженерно-строительные работы начались в 2014 году, а в начале 2016 года была установлена плазменная секция. Несколько месяцев спустя для проверки экспериментального оборудования сквозь нее были пропущены первые пучки протонов. В конце 2016 года были зарегистрированы первые кильватерные волны.

Источник: http://ria-sibir.ru/viewnews/69507.html

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top