Учёные придумали наноматериал для космических парусов управляемых лазером

Учёные придумали наноматериал для космических парусов управляемых лазером

Лазерные технологии, Лазеры в космосе Комментариев к записи Учёные придумали наноматериал для космических парусов управляемых лазером нет

В 2016 году российский бизнесмен Юрий Мильнер и британский астрофизик Стивен Хокинг объявили о старте громкого проекта. Предполагалось разработать зонд, который преодолеет 4,37 световых года, отделяющие Солнце от альфы Центавра (одной из ближайших звёзд) за 20 лет.

Согласно замыслу, аппарат весом менее килограмма будет оснащён парусом. В этот парус с Земли будет бить лазерный луч. На каждый квадратный сантиметр полотна придётся примерно по миллиону ватт (!). Давление этого излучения разгонит аппарат до скорости, эквивалентной 20% скорости света.

Однако из чего сделать парус, чтобы такой мощный луч попросту не испарил его? Этот материал должен обладать огромной отражательной способностью. Однако абсолютных зеркал не бывает, и какую-то долю энергии он всё равно будет поглощать. Значит, он должен эффективно излучать её обратно в космос, чтобы не перегреваться. Проблема в том, что эти два свойства трудно совместить.

Не забудем о том, что парус площадью в несколько квадратных метров должен иметь толщину не больше долей микрометра и массу всего в несколько граммов. При этом он ещё и должен быть достаточно прочным, чтобы выдержать огромное давление лазерного луча.

На роль такого «чудо-вещества» предлагался ультратонкий алюминий, различные полимеры и графен. Команда Этвотера разработала новое и, видимо, более эффективное решение.

Как уточняет ресурс phys.org, авторы предлагают использовать нанофотонные структуры. Материалы этого класса могут взаимодействовать с излучением на субволновом уровне. Поэтому они могут одновременно как эффективно отражать свет, так и охлаждаться, и позволяют создавать, например, эффективные «шапки-невидимки».

В качестве примера учёные рассмотрели двухслойную структуру из чистого кремния и его диоксида. По расчётам исследователей, слой кремния будет иметь достаточную отражательную способность в ближнем инфракрасном диапазоне, где и будет работать лазер. Правда, он «не умеет» эффективно охлаждаться за счёт излучения. Тут и пригодится диоксид кремния: нагреваясь от первого слоя, он будет излучать полученную энергию в космос уже в среднем инфракрасном диапазоне. Способность к отражению у этого материала невелика, но этого и не потребуется, ведь функция зеркала достанется кремнию.

Так простая идея взаимной компенсации недостатков и сложные расчёты в области нанофотонных структур помогли решить проблему «лазерного паруса». Правда, выводы физиков ещё предстоит проверить экспериментально.

Заметим, однако, что на пути к реализации смелого проекта стоит далеко не только проблема материала для паруса. Однако наука не стоит на месте, и постепенно преодолеваются и другие препятствия. Например, инженеры уже придумали, как защитить хрупкий аппарат от космической радиации.

Что же касается вопросов нерешённых, то многие специалисты интересуются, каким образом лазерный луч будет «следить» за зондом, чтобы попадать в площадку в несколько квадратных метров на межзвёздных расстояниях.

Источник: https://www.vesti.ru/doc.html?id=3057964

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top