Игра света в нанокристаллах помогла создать сверхминиатюрные волноводы

Игра света в нанокристаллах помогла создать сверхминиатюрные волноводы

Новости науки и техники Комментариев к записи Игра света в нанокристаллах помогла создать сверхминиатюрные волноводы нет

Стекольщики Венеции некогда поразили мир зеркалами, потрясающее качество которых обеспечивалось высочайшей отражательной способностью тончайшего слоя серебра. Много позже Альберт Эйнштейн предложил математическое объяснение фотоэффекта, без которого невозможно представить себе фотоэлемент, скажем, в турникете метро.

Эйнштейн за свою работу по фотоэффекту, описывающую взаимодействие света и материи, получил Нобелевскую премию в 1921-м. А годом позже в Стокгольм вызвали Нильса Бора, который теоретически предсказал квантовые скачки электронов с последующей релаксацией-возвращением на исходную орбиту и испусканием кванта света с большей длиной волны и соответственно меньшей энергией. По разнице энергии между скачком и релаксацией можно рассчитать количество затраченной работы.

Если продолжать накачивать электроны энергией, они в конечном итоге выдают поток когерентных фотонов одинаковой частоты или длины волны (поэтому речь обычно идет о зеленых или красных лазерах). Генерацию когерентных излучений осуществили советские физики Николай Басов и Александр Прохоров, а затем, в световом диапазоне, американец Чарлз Таунс. Все трое были удостоены Нобелевской премии в 1964 году.

Другой подход использовали исследователи из московского Института физики высоких давлений в Троицке и их коллеги из университетов французского Тура и датского Оденсе, которые осуществили возбуждение так называемых вакансий в наноалмазах на поверхности чипа. Алмазы, несмотря на свою выдающуюся прочность и твердость, тем не менее склонны к дефектам. Речь идет о «выпадении» из кристаллической решетки атома углерода, в результате чего возникает дырка, заполняемая, например, азотом. В этом случае говорят об азотной вакансии, или NV (Nitrogen Vacancy). Она поглощает свет с зелеными лучами, после чего испускает красный, что придает алмазам с NV розоватый оттенок. Вакансии могут замещаться и другим атомом, например германия (Ge), с образованием GeV-центров.

Наши ученые с коллегами использовали электронно-лучевую литографию, с помощью которой получили плазмон-поляритонные волноводы (плазмоны – это «общие» электронные волны, возбуждаемые на поверхности благородных металлов падающим светом). В качестве подложки авторы использовали серебро с его высокой отражательной способностью и нанопроволоки, а также канавки для направления по ним плазмонов. Благодаря этим ухищрениям были созданы сверхминиатюрные волноводы, с помощью которых возбуждение лазером с длиной волны 532 нанометра (нм) давало в полном соответствии с квантовыми законами излучение одиночных фотонов с длиной 738 нм.

Ученые отмечают, что использование германиевых вакансий дает большее поглощение света и соответственно эффективность в качестве эмиттеров одиночных фотонов. При этом алмазные нанокристаллы позволяют осуществлять возбуждение на расстоянии, сохраняя «светимость» нанокристаллов значительно дольше, чем алмазы с кремниевыми вакансиями.

Все это очень важно для возможного применения в лихорадочно создаваемых системах с квантовыми битами (Qubits).

Источник: http://www.ng.ru/science/2018-11-13/13_7437_diamond.html

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top