Лазеры вместо скальпеля

Лазерные технологии, Лазеры в медицине, Научная библиотека Комментариев к записи Лазеры вместо скальпеля нет

Давид Георгиевич Кочиев, Иван Александрович Щербаков // «Природа» №3, 2014

Уникальная способность лазера максимально концентрировать энергию в пространстве, во времени и в спектральном диапазоне делают этот прибор незаменимым средством во многих областях человеческой деятельности, и в частности в медицине [1, 2]. При лечении заболеваний происходит вмешательство в патологический процесс или болезненное состояние, что самым радикальным образом практикует хирургия. Благодаря прогрессу в науке и технологиях на смену механическим хирургическим инструментам приходят принципиально иные, в том числе лазерные.

Излучение и ткани
Если в качестве инструмента используется лазерное излучение, то его задача — вызвать изменения в биологической ткани (например, выполнить резекцию при операции, запускать химические реакции при фотодинамической терапии). Параметры лазерного излучения (длина волны, интенсивность, длительность воздействия) могут изменяться в широких пределах, что при взаимодействии с биологическими тканями дает возможность инициировать развитие различных процессов: фотохимических изменений, термической и фотодеструкции, лазерной абляции, оптического пробоя, генерации ударных волн и др.

На рис. 1 приведены длины волн лазеров, нашедших в той или иной степени применение в медицинской практике. Их спектральный диапазон простирается от ультрафиолетовой (УФ) до средней инфракрасной (ИК) области, а интервал плотностей энергии охватывает 3 порядка (1 Дж/см2 — 103 Дж/см2), интервал плотности мощности — 18 порядков (10−3 Вт/см2 — 1015 Вт/см2), временной диапазон — 16 порядков, от непрерывного излучения (~10 с) до фемтосекундных импульсов (10−15 с). Процессы взаимодействия лазерного излучения с тканями определяются пространственным распределением объемной плотности энергии и зависят от интенсивности и длины волны падающего излучения, а также от оптических свойств ткани.

Рис. 1. Типы лазеров, применяющихся в медицинской практике, и длины волн их излучения

Рис. 1. Типы лазеров, применяющихся в медицинской практике, и длины волн их излучения

На первых стадиях развития лазерной медицины биоткань представлялась как вода с «примесями», поскольку человек на 70–80% состоит из воды и полагалось, что механизм воздействия лазерного излучения на биоткани определяется ее поглощением. При применении непрерывных лазеров такая концепция была более или менее работоспособна. Если необходимо организовать воздействие на поверхность биоткани, следует выбрать длину волны излучения, сильно поглощаемого водой. Если требуется объемный эффект, наоборот, излучение должно слабо ею поглощаться. Однако, как выяснилось в дальнейшем, другие компоненты биоткани тоже способны поглощать (в частности, в видимой области спектра — составляющие крови, рис. 2). Пришло понимание, что биоткань — это не вода с примесями, а гораздо более сложный объект.

В то же время начали применяться импульсные лазеры. Воздействие на биоткани при этом определяется комбинацией длины волны, плотности энергии и длительности импульса излучения. Последний фактор, например, помогает разделить термическое и нетермическое воздействие.

В практику вошли импульсные лазеры с большим диапазоном изменения длительности импульса — от милли- до фемтосекунд. Здесь вступают в игру различного рода нелинейные процессы: оптический пробой на поверхности мишени, многофотонное поглощение, образование и развитие плазмы, генерация и распространение ударных волн. Стало очевидным, что невозможно создать единый алгоритм поиска нужного лазера и в каждом конкретном случае требуется свой подход. С одной стороны, это крайне осложнило задачу, с другой — открыло совершенно фантастические возможности варьировать способы воздействия на биологическую ткань.

Рис. 2. Зависимость поглощения от длины волны распространяющегося лазерного излучения для: воды (1), аорты (2), крови (3). Кружками показаны длины волн различных лазеров, применяемых в медицине


Рис. 2. Зависимость поглощения от длины волны распространяющегося лазерного излучения для: воды (1), аорты (2), крови (3). Кружками показаны длины волн различных лазеров, применяемых в медицине

При взаимодействии излучения с биотканями большое значение имеет рассеяние. На рис. 3 приведены два конкретных примера распределения интенсивности излучения в тканях предстательной железы собаки при падении на ее поверхность лазерного излучения с разными длинами волн: 2,09 и 1,064 мкм. В первом случае поглощение превалирует над рассеянием, во втором ситуация обратная (табл. 1).

Рис. 3. Рассчитанное в диффузном приближении распределение интенсивности излучения Ho:YAG-лазера с длиной волны около 2,09 мкм (1) и Nd:YAG-лазера с длиной 1,064 мкм (2), распространяющегося в ткани предстательной железы собаки. Показаны также интенсивность излучения Nd:YAG-лазера при отсутствии рассеяния (3) и ожидаемая форма распределения интенсивности излучения в приповерхностном слое (4)

Рис. 3. Рассчитанное в диффузном приближении распределение интенсивности излучения Ho:YAG-лазера с длиной волны около 2,09 мкм (1) и Nd:YAG-лазера с длиной 1,064 мкм (2), распространяющегося в ткани предстательной железы собаки. Показаны также интенсивность излучения Nd:YAG-лазера при отсутствии рассеяния (3) и ожидаемая форма распределения интенсивности излучения в приповерхностном слое (4)

В случае сильного поглощения проникновение излучения подчиняется закону Бугера — Ламберта — Бэра, т. е. имеет место экспоненциальное затухание. В видимом и ближнем ИК-диапазонах длин волн типичные значения коэффициентов рассеяния большинства биологических тканей лежат в пределах 100–500 см−1 и монотонно уменьшаются с увеличением длины волны излучения. За исключением УФ- и дальней ИК-области коэффициенты рассеяния биоткани на один-два порядка величины больше коэффициента поглощения. В условиях доминирования рассеяния над поглощением достоверную картину распространения излучения можно получить, используя модель диффузного приближения, имеющую, правда, вполне четкие рамки применимости, которые не всегда принимаются во внимание.

Таблица 1. Параметры лазерного излучения и оптические характеристики ткани предстательной железы собаки

Итак, при применении того или иного лазера для конкретных операций следует учитывать целый ряд нелинейных процессов и соотношение рассеяния и поглощения. Знание поглощающих и рассеивающих свойств выбранной ткани необходимо для расчета распределения излучения внутри биологической среды, определения оптимальной дозировки, планирования результатов воздействия.

Механизмы взаимодействия
Рассмотрим основные типы взаимодействия лазерного излучения с биологическими тканями, реализуемые при использовании лазеров в клинической практике.

Фотохимический механизм взаимодействия играет основную роль при фотодинамической терапии, когда в организм вводятся выбранные хромофоры (фотосенсибилизаторы). Монохроматическое излучение инициирует селективные фотохимические реакции с их участием, запускающие биологические преобразования в тканях. После резонансного возбуждения лазерным излучением молекула фотосенсибилизатора испытывает несколько синхронных или последовательных распадов, которые вызывают внутримолекулярные реакции переноса. В результате цепочки реакций высвобождается цитотоксический реагент, необратимым образом окисляющий основные клеточные структуры. Воздействие происходит при невысоких плотностях мощности излучения (~1 Вт/см2) и длительных временах (от секунд до непрерывного облучения). В большинстве случаев используется лазерное излучение видимого диапазона длин волн, имеющее большую глубину проникновения, что важно, когда требуется влиять на глубоколежащие тканевые структуры.

Если фотохимические процессы происходят за счет протекания цепочки специфических химических реакций, то термические эффекты при воздействии лазерного излучения на ткани, как правило, не специфичны. На микроскопическом уровне идут объемное поглощение излучения за счет переходов в молекулярных колебательно-вращательных зонах и последующее безызлучательное затухание. Температура ткани повышается очень эффективно, поскольку поглощению фотонов способствуют огромное количество доступных колебательных уровней большинства биомолекул и многочисленность возможных каналов релаксации при столкновениях. Типичные значения энергии фотонов равны: 0,35 эВ — для Er:YAG-лазеров1; 1,2 эВ — для Nd:YAG-лазеров; 6,4 эВ — для ArF-лазеров и значительно превышают кинетическую энергию молекулы, которая при комнатной температуре составляет лишь 0,025 эВ.

Термические эффекты в ткани играют доминирующую роль при использовании лазеров с непрерывным режимом генерации и импульсных лазеров, с длительностями импульса в несколько сот микросекунд и более (лазеры в режиме свободной генерации). Удаление ткани начинается после нагрева ее приповерхностного слоя до температуры выше 100°С и сопровождается повышением давления в мишени. Гистология на этом этапе показывает наличие разрывов и образование вакуолей (полостей) внутри объема. Продолжающееся облучение приводит к росту температуры до значений 350–450°С, происходит выгорание и карбонизация биоматериала. Тонкий слой карбонизированной ткани (≈20 мкм) и слой вакуолей (≈30 мкм) поддерживают высокий градиент давления вдоль фронта удаления ткани, скорость которого постоянна во времени и зависит от типа ткани.

При импульсном лазерном воздействии на развитие фазовых процессов влияет наличие внеклеточного матрикса (ВКМ). Кипение воды внутри объема ткани происходит, когда разница химических потенциалов пара и жидкой фазы, необходимая для роста пузырей, превышает не только поверхностное натяжение на границе раздела фаз, но и энергию эластичного растяжения ВКМ, необходимую для деформации матрицы окружающей ткани. Рост пузыря в ткани требует большего внутреннего давления, чем в чистой жидкости; повышение давление приводит к увеличению температуры кипения. Давление растет до тех пор, пока не превысит предел прочности ВКМ ткани при растяжении и не приведет к удалению и выбросу ткани. Термическое повреждение ткани может меняться от карбонизации и плавления на поверхности до гипертермии на глубину в несколько миллиметров в зависимости от плотности мощности и времени воздействия падающего излучения.

Пространственно ограниченный хирургический эффект (селективный фототермолиз) осуществляется при длительности импульса, меньшей характерного времени тепловой диффузии нагреваемого объема, — тогда тепло удерживается в области воздействия (не перемещается даже на расстояние, равное оптической глубине проникновения), и термическое повреждение окружающих тканей мало. Воздействие излучения непрерывных лазеров и лазеров с длинными импульсами (длительностью ≥100 мкс) сопровождается большей зоной термического поражения близлежащих к области воздействия тканей.

Сокращение длительности импульса меняет картину и динамику термических процессов при взаимодействии лазерного излучения с биотканями. При ускорении подвода энергии в биоматериал ее пространственное распределение сопровождается значительными термическими и механическими переходными процессами. Поглощая энергию фотонов и нагреваясь, материал расширяется, стремясь перейти в состояние равновесия в соответствии с его термодинамическими свойствами и с внешними условиями среды. Результирующая неоднородность распределения температуры порождает термоупругие деформации и распространяющуюся в материале волну сжатия.

Однако расширение или установление механического равновесия в ответ на нагрев ткани занимает характерное время, равное по порядку величины времени, необходимому продольной акустической волне для прохождения по системе. Когда длительность лазерного импульса его превышает, материал расширяется в течение действия импульса, и значение индуцированного давления меняется вместе с интенсивностью лазерного излучения. В обратном случае энерговклад в систему происходит быстрее, чем та успевает механически на него реагировать, и скорость расширения определяется инерцией нагретого слоя ткани независимо от интенсивности излучения, а давление меняется вместе со значением объемной энергии, поглощенной в ткани. Если взять совсем короткий импульс (с длительностью, много меньшей времени пробега акустической волны по области тепловыделения), ткань будет «инерциально удерживаться», т. е. не получит времени на расширение, и нагрев произойдет при постоянном объеме.

Когда скорость выделения энергии в объеме ткани при поглощении лазерного излучения намного выше скорости убыли энергии на испарение и нормальное кипение, вода, находящаяся в ткани, переходит в перегретое метастабильное состояние. При подходе к спинодали2 вступает в действие флуктуационный механизм возникновения зародышей (гомогенная нуклеация), что обеспечивает быстрый распад метастабильной фазы. Наиболее ярко процесс гомогенной нуклеации проявляется при импульсном нагреве жидкой фазы, что выражается во взрывном вскипании перегретой жидкости (фазовый взрыв).

Лазерное излучение способно и напрямую разрушать биоматериал. Энергия диссоциации химических связей органических молекул меньше энергии фотонов лазерного излучения УФ-диапазона (4,0–6,4 эВ) или сравнима с ней. При облучении ткани такие фотоны, поглощаясь сложными органическими молекулами, могут вызывать прямой разрыв химических связей, осуществляя «фотохимический распад» материала. Механизм взаимодействия в диапазоне длительностей лазерного импульса 10 пс — 10 нс может быть классифицирован как электромеханический, что подразумевает генерацию плазмы в интенсивном электрическом поле (оптический пробой) и удаление тканей за счет распространения ударных волн, кавитации и формирования струй.

Образование плазмы на поверхности ткани характерно для коротких длительностей импульса при интенсивностях излучения порядка 1010–1012 Вт/см2, соответствующих напряженности локального электрического поля ~106–107 В/см. В материалах, испытывающих повышение температуры благодаря высокому значению коэффициента поглощения, плазма может возникать и поддерживаться за счет термоэмиссии свободных электронов. В средах с малым поглощением она образуется при больших интенсивностях излучения за счет освобождения электронов при многофотонном поглощении излучения и лавинообразной ионизации молекул ткани (оптический пробой). Оптический пробой позволяет «закачивать» энергию не только в хорошо поглощающие пигментированные, но и в прозрачные, слабо поглощающие ткани.

Удаление тканей при воздействии импульсным лазерным излучением требует деструкции ВКМ и не может рассматриваться просто как процесс дегидратации при нагреве. К разрушениям ВКМ ткани приводят давления, генерируемые при фазовом взрыве и ограниченном кипении. В результате наблюдается взрывной выброс материала без полного испарения. Энергетический порог такого процесса оказывается ниже удельной энтальпии парообразования воды. Ткани, имеющие высокую прочность на разрыв, требуют более высоких температур для разрушения ВКМ (пороговая объемная плотность энергии должна быть сравнима с энтальпией парообразования).

Инструменты на выбор
Один из самых распространенных хирургических лазеров — Nd:YAG-лазер, используемый при вмешательствах с эндоскопическим доступом в пульмонологии, гастроэнтерологии, урологии, в эстетической косметологии при удалении волос, при интерстициальной лазерной коагуляции опухолей в онкологии. В режиме модулированной добротности, с длительностями импульса от 10 нс, он применяется в офтальмологии, например при лечении глаукомы.

Большинство тканей на его длине волны (1064 нм) имеют низкий коэффициент поглощения. Эффективная глубина проникновения такого излучения в ткани может составлять несколько миллиметров и обеспечивает хорошие гемостаз и коагуляцию. Однако объем удаленного материала относительно невелик, а рассечение и абляция3 тканей может сопровождаться термическим повреждением близлежащих областей, отеками и воспалительными процессами.

Важное преимущество Nd:YAG-лазера — возможность доставки излучения в зону воздействия волоконно-оптическими световодами. Использование эндоскопического и волоконного инструмента позволяют проводить лазерное излучение в нижний и верхний отделы желудочно-кишечного тракта практически неинвазивным способом. Увеличение длительности импульса этого лазера в режиме модулированной добротности до 200–800 нс позволило использовать тонкие оптические волокна с диаметром сердцевины 200–400 мкм для фрагментации камней. К сожалению, поглощение в оптическом волокне не позволяет доставлять лазерное излучение с длинами волн, более эффективными для абляции тканей, такими как 2,79 мкм (Er:YSGG4) и 2,94 мкм (Er:YAG). Для транспортировки излучения с длиной волны 2,94 мкм в Институте общей физики (ИОФ) им. А. М. Прохорова РАН была разработана оригинальная технология роста кристаллических волокон, с помощью которой было изготовлено уникальное кристаллическое волокно из лейкосапфира, прошедшее успешные испытания. Транспортировка излучения по коммерчески доступным световодам возможна для излучения с меньшими длинами волн: 2,01 мкм (Cr:Tm:YAG) и 2,12 мкм (Cr:Tm:Ho:YAG) [3]. Глубина проникновения излучения этих длин волн достаточно мала для эффективной абляции и минимизации сопутствующих термических эффектов (она составляет ~170 мкм для тулиевого лазера и ~350 мкм для гольмиевого).

Дерматология взяла на вооружение лазеры как видимого (рубиновые, александритовые, лазеры с генерацией второй гармоники нелинейными кристаллами титанил-фосфата калия, KTP), так и инфракрасного диапазона длин волн (Nd:YAG). Селективный фототермолиз — основной эффект, используемый при лазерном воздействии на ткани кожи; показания для лечения — различные сосудистые поражения кожи, доброкачественные и злокачественные опухоли, пигментация, удаление татуировок и косметические вмешательства.

Лазеры на ErCr:YSGG (2780 нм) и Er:YAG (2940 нм) применяются в стоматологии для воздействия на твердые ткани зубов при лечении кариеса и подготовке полости зуба; при манипуляциях отсутствуют термические эффекты, повреждения структуры зуба и дискомфорт у пациента. KTP-, Nd:YAG-, ErCr:YSGG- и Er:YAG-лазеры задействованы в хирургии на мягких тканях ротовой полости.

Исторически первая область медицины, которая освоила новый инструмент, — офтальмология. Работы, связанные с привариванием сетчатки лазером, начались еще в конце 1960-х. Понятие «лазерная офтальмология» стало общеупотребительным, современную клинику этого профиля невозможно представить без применения лазеров. Приваривание сетчатки световым излучением обсуждалось многие годы, однако лишь с появлением лазерных источников фотокоагуляция сетчатки вошло в широкую повседневную клиническую практику.

В конце 70-х — начале 80-х годов прошлого столетия развернулись работы с лазерами на основе импульсного Nd:YAG-лазера для разрушения капсулы хрусталика в случае вторичной катаракты. Сегодня капсулотомия, выполняемая с помощью неодимового лазера с модулированной добротностью, — стандартная хирургическая манипуляция при лечении этого заболевания. Революцию в офтальмологии совершило открытие возможности изменять с помощью коротковолнового УФ-излучения кривизну роговицы и таким образом корректировать остроту зрения. Лазерные операции по коррекции зрения теперь широко распространены и выполняются во многих клиниках. Существенный прогресс в рефракционной хирургии и в ряде других малоинвазивных микрохирургических вмешательств (при пересадке роговицы, создании внутристромальных каналов, лечении кератоконуса и др.) был достигнут при внедрении лазеров с короткой и сверхкороткой длительностью импульсов.

В настоящее время в офтальмологической практике наиболее популярны твердотельные Nd:YAG- и Nd:YLF5-лазеры (непрерывные, импульсные с модуляцией добротности с длительностью импульсов порядка нескольких наносекунд и фемтосекундные), в меньшей степени — Nd:YAG-лазеры с длиной волны 1440 нм в режиме свободной генерации, Ho- и Er-лазеры.

Поскольку различные участки глаза имеют разный состав и разный коэффициент поглощения для одной и той же длины волны, выбор последней определяет как отрезок глаза, на котором будет происходить взаимодействие, так и локальный эффект в зоне фокусировки. Исходя из спектральных характеристик пропускания глаза, для хирургического воздействия на внешние слои роговицы и переднего отрезка целесообразно использовать лазеры с длиной волны в диапазоне 180–315 нм. Более глубокое проникновение, вплоть до хрусталика, возможно осуществить в спектральном диапазоне 315–400 нм, а для всех дальних областей подходит излучение с длиной волны более 400 нм и вплоть до 1400 нм, когда начинается существенное поглощение воды.

Физика — медицине
На основе учета свойств биологических тканей и типа реализуемого взаимодействия при падении излучения Институт общей физики разрабатывает лазерные системы для применения в различных областях хирургии, сотрудничая со многими организациями. В число последних входят академические институты (Институт проблем лазерных и информационных технологий — ИПЛИТ, Институт спектроскопии, Институт аналитического приборостроения), Московский государственный университет им. М. В. Ломоносова, ведущие медицинские центры страны (МНТК «Микрохирургия глаза» им. С. Н. Федорова, Московский научно-исследовательский онкологический институт им. П. А. Герцена Росздрава, Российская медицинская академия последипломного образования, Научный центр сердечно-сосудистой хирургии им. А. Н. Бакулева РАМН, ЦКБ № 1 ОАО РЖД), а также ряд коммерческих компаний («Оптосистемы», «Визионика», «Новые энергетические технологии», «Лазерные технологии в медицине», «Кластер», НТЦ «Волоконные оптические системы»).

Так, в нашем институте создан лазерный хирургический комплекс «Лазурит», который может выступать в качестве как скальпеля-коагулятора, так и литотриптора, т. е. прибора для разрушения камней в органах человека. Причем литотриптор работает на новом оригинальном принципе — используется излучение с двумя длинами волн. Это лазер на базе кристалла Nd:YAlO3 (с основной длиной волны излучения 1079,6 нм и его второй гармоникой в зеленой области спектра). Установка снабжена блоком обработки видеоинформации и позволяет следить за операцией в режиме реального времени.

Двухволновое лазерное воздействие микросекундной длительности обеспечивает фотоакустический механизм фрагментации камней, который основан на открытом А. М. Прохоровым с сотрудниками [4] оптико-акустическом эффекте — генерации ударных волн при взаимодействии лазерного излучения с жидкостью. Воздействие оказывается нелинейным [5, 6] (рис. 4) и включает в себя несколько стадий: оптический пробой на поверхности камня, образование плазменной искры, развитие кавитационного пузыря и распространение ударной волны при его коллапсе.

Рис. 4. Динамика развития кавитационного пузыря: 1 — плазма спустя 10 мкс после падения излучения на поверхность камня; 2–4 — рост кавитационного пузыря до максимального радиуса R = 4 мм через 312 мкс; 5–7 — процесс схлопывания пузыря; 7 — момент коллапса кавитационного пузыря спустя 708 мкс [6]

Рис. 4. Динамика развития кавитационного пузыря: 1 — плазма спустя 10 мкс после падения излучения на поверхность камня; 2–4 — рост кавитационного пузыря до максимального радиуса R = 4 мм через 312 мкс; 5–7 — процесс схлопывания пузыря; 7 — момент коллапса кавитационного пузыря спустя 708 мкс [6]

В итоге через ~700 мкс с момента падения лазерного излучения на поверхность камня происходит разрушение последнего благодаря воздействию ударной волны, генерируемой при коллапсе кавитационного пузыря. Преимущества такого метода литотрипсии очевидны: во-первых, обеспечивается безопасность воздействия на окружающие камень мягкие ткани, так как ударная волна в них не поглощается и, следовательно, не наносит им вреда, присущего другим лазерным методам литотрипсии; во-вторых, достигается высокая эффективность при фрагментации камней любой локализации и химического состава (табл. 2); в-третьих, гарантируется высокая скорость фрагментации (см. табл. 2: продолжительность разрушения камней варьируется в диапазоне 10–70 с в зависимости от их химического состава); в-четвертых, при доставке излучения не повреждается волоконный инструмент (за счет оптимально выбранной длительности импульса); наконец, радикально снижается число осложнений и сокращается послеоперационный период лечения.

Таблица 2. Химический состав камней и параметры лазерного излучения при фрагментации в экспериментах in vitro

Комплекс «Лазурит» (рис. 5) включает в себя также скальпель-коагулятор, который позволяет, в частности, успешно проводить уникальные операции на кровенаполненных органах, таких как почка, удалять опухоли с минимальной кровопотерей, без пережатия почечных сосудов и без создания искусственной ишемии органа, сопутствующей принятым сейчас способам хирургического вмешательства. Резекция проводится при лапароскопическом доступе. При эффективной глубине проникновения импульсного одномикронного излучения ~1 мм одновременно осуществляются резекция опухоли, коагуляция и гемостаз, а также достигается абластичность раны. Разработана новая медицинская технология лапароскопической резекции почки при раке Т1N0M0.

Результатами исследовательских работ в области офтальмалогии стали разработки офтальмологических лазерных систем «Микроскан» и ее модификации «Микроскан Визум» для рефракционной хирургии на основе ArF-эксимерного лазера (193 нм). С помощью этих установок осуществляется коррекция близорукости, дальнозоркости и астигматизма. Реализован так называемый метод «летающего пятна»: роговица глаза засвечивается пятном излучения диаметром порядка 0,7 мм, которое сканирует ее поверхность по алгоритму, заданному компьютером, и изменяет ее форму. Коррекция зрения на одну диоптрию при частоте повторения импульсов 300 Гц обеспечивается за 5 с. Воздействие остается поверхностным, так как излучение с этой длиной волны сильно поглощается роговицей глаза. Система слежения за глазом позволяет обеспечить высокое качество операции независимо от подвижности глаза пациента. Установка «Микроскан» сертифицирована в России, странах СНГ, Европе и Китае, ею оснащены 45 российских клиник. Офтальмологические эксимерные системы для рефракционной хирургии, разработанные в нашем институте, в настоящее время занимают 55% отечественного рынка.

При поддержке Федерального агентства по науке и инновациям при участии ИОФ РАН, ИПЛИТ РАН и МГУ создан офтальмологический комплекс, включающий в себя «Микроскан Визум», диагностическую аппаратуру, состоящую из аберрометра и сканирующего офтальмоскопа, а также уникальную фемтосекундную лазерную офтальмологическую систему «Фемто Визум». Рождение этого комплекса стало примером плодотворного сотрудничества академических организаций с Московским государственным университетом в рамках единой программы: в ИОФ был разработан хирургический инструмент, а в МГУ и ИПЛИТе — диагностическая аппаратура, что позволяет проводить целый ряд уникальных офтальмологических операций. На принципе работы фемтосекундной офтальмологической установки следует остановиться подробнее. За ее основу был выбран неодимовый лазер с длиной волны излучения 1064 нм. Если в случае применения эксимерного лазера роговица сильно поглощает, то при длине волны ~1 мкм линейное поглощение слабое. Однако за счет малой длительности импульса (400 фс) при фокусировке излучения удается достичь высокой плотности мощности, и, следовательно, становятся эффективными многофотонные процессы. При организации соответствующей фокусировки оказывается возможным так воздействовать на роговицу, что ее поверхность никак не затрагивается, а многофотонное поглощение осуществляется в объеме. В качестве механизма воздействия выступает фотодеструкция тканей роговицы при многофотонном поглощении (рис. 6), когда отсутствует термическое повреждение близлежащих слоев ткани и возможно осуществление вмешательства с прецизионной точностью. Если для излучения эксимерного лазера энергия фотона (6,4 эВ) сравнима с энергией диссоциации, то в случае одномикронного излучения (1,2 эВ) она по крайней мере вдвое, а то и в семь раз меньше, что и обеспечивает описанный эффект и открывает новые возможности в лазерной офтальмологии.

Рис. 6. Процессы однофотонного и многофотонного поглощения тканью роговицы глаза лазерного излучения: системы «Микроскан» с длиной волны 193 нм и энергией фотона 6,4 эВ (а) и системы «Фемто Визум» с длиной волны 1,064 мкм, длительностью импульса 250–400 фс и энергией фотона 1,2 эВ (б)

Рис. 6. Процессы однофотонного и многофотонного поглощения тканью роговицы глаза лазерного излучения: системы «Микроскан» с длиной волны 193 нм и энергией фотона 6,4 эВ (а) и системы «Фемто Визум» с длиной волны 1,064 мкм, длительностью импульса 250–400 фс и энергией фотона 1,2 эВ (б)

Интенсивно развиваются сегодня фотодинамическая диагностика и терапия рака на основе использования лазера, монохроматическое излучение которого возбуждает флуоресценцию красителя-фотосенсибилизатора и инициирует селективные фотохимические реакции, вызывающие биологические преобразования в тканях. Дозы введения красителя составляют 0,2–2 мг/кг. При этом фотосенсибилизатор преимущественно накапливается в опухоли, и его флуоресценция позволяет установить локализацию опухоли. За счет эффекта переноса энергии и увеличения мощности лазера происходит образование синглетного кислорода, являющегося сильным окислителем, что приводит к разрушению опухоли. Таким образом, по описанной методике осуществляется не только диагностика, но и лечение онкологических заболеваний. Следует заметить, что введение фотосенсибилизатора в организм человека — не вполне безобидная процедура и поэтому в ряде случаев лучше применять так называемую лазероиндуцированную аутофлуоресценцию. Оказалось, в некоторых случаях, в особенности с использованием коротковолнового лазерного излучения, здоровые клетки не флуоресцируют, тогда как раковые клетки обнаруживают эффект флуоресценции. Эта методика предпочтительнее, однако она пока служит в основном диагностическим целям (хотя в последнее время предпринимаются шаги и для реализации терапевтического эффекта). В нашем институте разработаны серии приборов как для флуоресцентной диагностики, так и для фотодинамической терапии. Это оборудование сертифицировано и выпускается серийно, им оснащены 15 московских клиник.

Для эндоскопических и лапароскопических операций необходимый компонент лазерной установки составляют средства доставки излучения и формирования его поля в области взаимодействия. У нас сконструированы такие устройства на основе многомодовых оптических волокон, позволяющие работать в спектральной области от 0,2 до 16 мкм.

При поддержке Федерального агентства по науке и инновациям в ИОФ развивается методика поиска распределения наночастиц по размерам в жидкости (и в частности, в крови человека) с помощью спектроскопии квазиупругого рассеяния света. Было обнаружено, что присутствие в жидкости наночастиц приводит к уширению центрального пика рэлеевского рассеяния, и измерение величины этого уширения позволяет определять размеры наночастиц. Исследование спектров размеров наночастиц в сыворотке крови пациентов с сердечно-сосудистыми нарушениями показали присутствие белково-липидных кластеров больших размеров (рис. 7). Было также установлено, что частицы больших размеров характерны и для крови онкологических больных. Более того, при положительном результате лечения пик, ответственный за частицы больших размеров, исчезал, но в случае рецидива снова появлялся. Таким образом, предлагаемая методика весьма полезна для диагностики как онкологических, так и сердечно-сосудистых заболеваний.

Рис. 7. Спектр размеров молекулярных комплексов сыворотки крови здорового пациента (а) и пациента с сердечно-сосудистыми нарушениями (б)

Рис. 7. Спектр размеров молекулярных комплексов сыворотки крови здорового пациента (а) и пациента с сердечно-сосудистыми нарушениями (б)

Ранее в институте был разработан новый метод обнаружения предельно низких концентраций органических соединений. Основными составляющими прибора служили лазер, времяпролетный масс-спектрометр и наноструктурированная пластина, на которой адсорбировался исследуемый газ. Сегодня эта установка модифицируется для анализа крови, что также откроет новые возможности для ранней диагностики многих заболеваний.

***

Решение целого ряда медицинских проблем возможно только при объединении усилий в нескольких областях: это и фундаментальные исследования по лазерной физике, и детальное изучение взаимодействия излучения с веществом, и анализ процессов переноса энергии, и медико-биологические изыскания, и разработка медицинских технологий лечения.

В заключение хотелось бы подчеркнуть, что пионером применения методов лазерной физики в медицине был Александр Михайлович Прохоров, основатель Института общей физики. Многие из работ, о которых шла речь выше, были начаты по его инициативе.

Литература
1. Щербаков И. А. Лазерная физика в медицине // УФН. 2010. Т. 180. №:6. С. 661–665.
2. Kochiev D. G., Lukashev A. V., Vartapetov S. K., Shcherbakov I. A. Surgical solid-state lasers and their clinical applications // Handbook of solid-state lasers / Edited by B. Denker and E. Shklovsky. 2013. P. 572–597.
3. Конов В. И., Осико В. В., Щербаков И. А. Фундаментальные достижения оптики и лазерной физики для медицины // Вестник РАН. 2004. Т. 74. № 2. С. 99–124.
4. Аскарьян Г. А., Прохоров A. M., Чантурия Г. Ф. и др. Луч ОКГ в жидкости // ЖЭТФ. 1963. Т. 44. В. 6. С. 2180–2182.
5. Helfmann J., Mihailov V. A., Konov V. I. et al. Efficiency of stone fragmentation by long pulses of a Q-switched Nd:YAG laser // Proceedings SPIE. 1992. 1643. P. 78.
6. Rink K., Delacretaz G., Salathe R. P. Fragmentation process of current laser lithotriptors. // Lasers Surg. Med. 1995. V. 16. P. 134–146.

Источник: https://elementy.ru/NAUCHNO-POPULYARNAYA_BIBLIOTEKA/434365/LAZERY_VMESTO_SKALPELYA

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top