Учёные Курчатовского института и РХТУ нашли способ с помощью фемтосекундных световых импульсов соединять кристаллы для твердотельных лазеров

Лазеры в науке, Сделано в России Комментарии к записи Учёные Курчатовского института и РХТУ нашли способ с помощью фемтосекундных световых импульсов соединять кристаллы для твердотельных лазеров отключены

Ученые из РХТУ вместе с коллегами из Института общей физики им. А.М. Прохорова РАН, Курчатовского института и НИИ «Полюс» работают над созданием систем охлаждения твердотельных лазеров, используемых в медицине, косметологии и других областях.

Исследователи разрабатывают технологию надежного соединения двух кристаллов и предлагают использовать для этого фемтосекундную лазерную сварку. В недавней работе в журнале Optics and Laser Technology они показали, что в месте образования сварных швов после воздействия интенсивных световых импульсов появляются наноразмерные аморфные области, которые служат мостиками, надежно соединяющими отдельные кристаллы. Эту же технологию можно применять для соединения самых разных материалов.


А — общая схема эксперимента, фемтосекундный лазерный луч фокусируется на границе контакта кристаллов и выжигает сварной шов. Б, В — схемы нанесения швов в разных экспериментахOptics&Laser Technologies/Elsevier

Твердотельные лазеры на кристаллах алюмо-иттриевого граната с примесями ионов неодима (Nd:YAG) активно используют в разных областях: косметологии, медицине, научных исследованиях, промышленности и даже оборонном комплексе — например, для лазерных видоискателей. Основная слабость этой технологии — это тепло, которое выделяется из активной среды лазера при его работе. Нагрев может привести к деформации самого кристалла (активной среды) и ухудшению качества лазерного пучка. Поэтому лишнее тепло необходимо отводить с помощью охлаждающих элементов.

В качестве теплоотвода можно использовать точно такой же кристалл, присоединить который к материалу активной среды можно разными способами. Сейчас чаще всего используют диффузионный контакт, в котором кристаллы скрепляются за счет притяжения атомов друг к другу. Но эта технология требует высочайшего качества поверхности, а оно не всегда достижимо, особенно для мелких деталей, например, оптоволокна. Другие варианты соединения — склеивание и пайка — обеспечивают прочность, но не гарантируют однородности шва. Из-за наличия постороннего вещества прочность такого соединения может быть непредсказуема под нагрузкой или при изменении температур.

Перспективный вариант — это лазерная сварка, для которой используют уже другой лазер — фемтосекундный. Он разогревает материал, размягчает его и образуется сварной шов. При этом с использованием фемтосекундного лазера зона нагрева может располагаться не только на поверхности материала, но и в его глубине, а тепло фокусируется так точно, что не повреждает материал вокруг шва. Это позволяет создать плотное, прочное и термостойкое соединение: в перспективе данную технологию можно использовать даже в условиях открытого космоса — например, при создании лазеров прямо на орбите.

«С помощью фемтосекундного лазера можно сваривать стекла между собой, стекло и металл, стекло и кремний, а мы впервые попробовали соединить лазерной сваркой два кристалла Nd:YAG и результаты этих экспериментов оказались поразительными», — говорит сотрудник кафедры химической технологии стекла и ситаллов РХТУ и первый автор статьи, Татьяна Липатьева. Аморфные мостики между кристаллами «Монокристаллы Nd:YAG вырастили и отполировали наши коллеги из НИИ «Полюс» им. М.Ф. Стельмаха. Специальных операций высокоточной полировки вроде ионного травления не проводилось, поэтому контакт двух пластинок составлял не более 70% поверхности. Ведь наша задача была как раз в том, чтобы продемонстрировать возможности сварки для кристаллов с поверхностью после стандартной металлографической полировки», — поясняет Татьяна Липатьева.

В эксперименте использовали кристаллы толщиной 1 мм, но разных размеров. Для изучения механической прочности сварного шва взяли пластинки 5х5 мм, а для проверки надежности соединения под лазерной накачкой — кристаллы побольше, 30х12 мм. Образцы размещали попарно, один под другим, не используя дополнительного прижима, кроме естественной силы тяжести. Пучок фемтосекундного лазера проходил через верхний кристалл и фокусировался на поверхности раздела двух пластин. Сварные швы формируются за счет перемещения образцов со скоростью 1 мм/с относительно лазерного луча. Для дальнейших испытаний прочности соединения швы наносили параллельно, а для проверки мощности лазера — в виде концентрических кругов. Расстояние между ними составляло 10 и 20 мкм, а ширина каждого шва равнялась 3 мкм, что обусловлено фокусирующей оптикой и тепловыми характеристиками кристалла.

«После лазерной сварки кристаллы отшлифовали и отполировали, чтобы сварное соединение оказалось на поверхности. Впервые в мире мы исследовали сварной шов фемтосекундного лазера с помощью электронной микроскопии высокого разрешения. Оказалось, что в месте сварки двух пластин Nd:YAG появляются точки аморфизации, где разрушается кристаллическая структура, и сварный шов представляет собой чередование аморфных наноплоскостей толщиной 80-90 нм, отделенных друг от друга кристаллическими областями протяженностью 400-450 нм. Причина возникновения этих аморфных областей нам пока до конца не ясна, но зато понятно, что именно они служат теми мостиками, которые соединяют кристаллы Nd:YAG», — рассказывает Татьяна Липатьева.

Ученые испытали образцы, скрепленные лазерными швами, на термостойкость, прочность и способность выдерживать энергии, необходимые для работы лазера. Даже при том, что швы занимали не более 10% площади контакта, прочность соединения на сдвиг доходила до 110 МПа. Этого достаточно, чтобы выдерживать режим накачки кристаллов лазером. Прочность в перспективе можно повысить, увеличив плотность записи сварных швов и добавив стадию термообработки для снятия остаточных напряжений.

Для проверки термостойкости соединения кристаллы нагревали в электропечи до 1000°C (температуры плавления кристалла) и остужали до комнатной температуры. На концах параллельных швов после этого этапа появились микротрещины, однако круговые и спиральные швы остались без изменений.

Наконец, чтобы проверить работоспособность подхода, необходимо было еще произвести лазерную накачку сваренных пластин, то есть ввести в образец энергию, сопоставимую с мощностью действующего Nd:YAG-лазера. Строго в центр круговых сварных швов сфокусировали лазерное излучение со средней мощностью 10 Вт. Образец в итоге выдержал нагрузку в 15 кВт/см2 — мощность накачки, превышающую обычно используемую для твердотельных лазеров Nd:YAG. Накачка лазером, как и нагрев до 1000 °C, не привела к разъединению кристаллов.

«Все проверки доказали, что предложенная нами методика подходит для создания охлаждающих элементов лазера. Но для меня самое ценное то, что мы смогли заглянуть внутрь сварного шва и увидели там аморфные наноплоскости. Таких экспериментов с алюмо-иттриевым гранатом до сих пор не проводил никто, и даже в нашей научной группе были сомнения, что с помощью фемтосекундного лазера можно локально аморфизовать кристалл, то есть получить вместо кристаллической решетки аморфный материал. Это открывает большие перспективы исследований: можно соединять различные материалы, а не только кристаллы, можно попробовать существенно уменьшить площадь сварного шва и проверить, будет ли работать технология для отдельных волокон, и так далее», — говорит Татьяна Липатьева.

Источник:  https://www.atomic-energy.ru/news/2021/12/22/120498

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.w@yandex.ru

Back to Top