Разработка акустооптического устройства для управления положением микрообъектов

Лазерное сканирование, Научная библиотека Комментарии к записи Разработка акустооптического устройства для управления положением микрообъектов отключены

Ю.В. Пичугина, А.С. Мачихин // Журнал Фотоника, 2020, №3

В работе рассматривается метод акустооптического сканирования. Его характеризует высокая точность и возможность независимого управления несколькими оптическими ловушками при манипулировании микрообъектами с помощью оптического пинцета. Брэгговская дифракция света ультразвуковыми волнами позволяет создавать надежные твердотельные устройства для точного и быстрого отклонения лазерного луча. Описана схема оптического пинцета с двухмерным сканированием на базе ПК, реализованная двумя последовательными акустооптическими ячейками.

Введение
В настоящее время разработка, изучение и использование оптических пинцетов вызывают большой научный и практический интерес. Оптический пинцет представляет собой оптический инструмент, который позволяет манипулировать микроскопическими объектами с помощью лазерного света. Данный метод основан на возможности жесткой фокусировки лазерного излучения, в котором пространственно неоднородное оптическое поле вблизи перетяжки сильно сфокусированного лазерного луча формирует эффективную пространственную потенциальную яму.

Ключевым элементом оптического пинцета является система сканирования, предназначенная для управления пучком и его параметрами [1–2]. В большинстве существующих оптических пинцетов для управления положением световой ловушки используют зеркальные и зеркально-­линзовые системы. Такие системы не позволяют быстро перемещать ловушку из одной произвольной точки поля зрения в другую из-за высокой инерционности систем перемещения зеркал и линз, а к юстировке схем на основе таких систем предъявляются высокие требования, что ведет к необходимости использовать дорогие и сложные приводные механизмы и делает невозможным создание нескольких световых ловушек одновременно. Системы управления, в основе которых лежат жидкокристаллические (немеханические) модуляторы оптического излучения, лишены некоторых недостатков, свой­ственных зеркальным и зеркально-­линзовым системам, однако обладают низким быстродействием. В сравнении с известными системами манипулирования, акустооптический дефлектор характеризуется на порядок более высоким быстродействием, возможностью независимого управления несколькими оптическими ловушками, мгновенным, высокоточным, адресным (скачкообразным) перемещением ловушки в пределах поля зрения.

В данной работе рассматривается двухкоординатная акустооптическая (АО) сканирующая система для немеханического манипулирования микрообъектами с помощью оптического пинцета. В АО системе, положение ловушки определяется только частотой акустических волн, возбуждаемых в кристаллах. Скорость настройки ограничена в основном временем прохождения акустической волны в кристалле, которое обычно составляет несколько микросекунд [3].

Полученные результаты показывают преимущества и перспективы АО немеханического манипулирования микрообъектами с помощью оптического пинцета.

Принципиальная схема
Схема оптических пинцетов для манипулирования микрообъектами с помощью двумерного АО‑сканирования показана на рис. 1. Диаметр лазерного луча увеличен с помощью расширителя пучка, и после направлен к двухкоординатному акустооптическому дефлектору (АОД), который представляет собой две одинаковые ортогональные АО ячейки.

Первая АО ячейка отклоняет лазерный луч в меридиональной плоскости, вторая – ​в сагиттальной плоскости, так что диаметр луча не изменяется. Система линз необходима для сопряжения AO ячеек и микрообъектива, которая фокусирует лазерное излучение на исследуемый образец, расположенный в кювете. Двигая последнюю линзу можно перемещать перетяжку лазерного излучения вдоль оси, т. е. выполнять фокусировку пучка.

Цифровая камера с микроскопической системой визуализации размещена на противоположной стороне образца, и позволяет в режиме реального времени наблюдать и контролировать положение световой ловушки.

Акустооптический дефлектор
АО ячейка представляет собой кристалл ТеО2, к одному из краев которого прикреплен пьезопреобразователь. При подаче напряжения на пьезопреобразователь в кристалле распространяется акустическая волна, которая создает динамическую дифракционную решетку для лазерного пучка, проходящего через кристалл [4]. Изменяя и модулируя напряжение на АОД, первый дифракционный максимум лазерного пучка отклоняется на контролируемые углы. Возбуждение звуковых волн происходит при подаче сигналов от электронного драйвера на электроды. Драйвер состоит из генератора и широкополосного усилителя. Для реализации режима бегущей звуковой волны к противоположной грани кристалла прикреплен акустический поглотитель. Быстрая модуляция приводит к тому, что оптическая ловушка переключается между разными положениями, т. е. создается несколько ловушек. Схематическая конструкция и состав однокоординатной акустооптической сканирующей системы в режиме дифракции Брэгга показан на рис. 2.

С помощью этих формул мы можем вычислить параметры АО ячеек. Например, это необходимо для улавливания частиц диаметром δ = 1 мкм в диапазоне Δx × Δy = 100 мкм × 100 мкм, используя микрообъектив с fMO = 3,6 мм, и He-­Ne лазер (λ = 632,8 нм) с диаметром пучка d = 1,2 мм. Используя формулы, мы установили параметры нашей установки: ГBE = 5, ГRS = 1, D0 = 6 мм, Δϕx × Δϕy ≈ 1,5° × 1,5°, Nx × Ny ≈ 250 × 250, Δf = 32 МГц. В настоящее время мы собираем установку, показанную на рис. 1 с приведенными параметрами.

Заключение

В данной работе обсуждается АО двумерная система отклонения для немеханического манипулирования микрообъектами с помощью оптического пинцета. Мы разработали и изготовили ячейки АО, которые могут стать основой такой сканирующей системы. Правильное назначение параметров АОД и параметров других компонентов позволяет построить систему оптического захвата [5–7].

Полное содержание статьи: https://www.photonics.su/files/article_pdf/8/article_8235_417.pdf

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top