Лазерное выращивание металлических деталей — важнейшее направление аддитивных технологий

3d-печать Комментарии к записи Лазерное выращивание металлических деталей — важнейшее направление аддитивных технологий отключены

Среди направлений развития аддитивных технологий наиболее актуальным для России, США и ЕС является металлическое направление — производство деталей для сложных узлов аэрокосмической, транспортной и оборонной техники, в частности, жаростойких элементов турбореактивных двигателей.

Схема лазерного выращивания по технологии Bed Deposition и Direct Deposition

Есть два распространенных класса 3D-технологий изготовления изделий из металла:

Технология выращивания из слоя металлического порошка (Bed Deposition) предполагает на первом этапе формирование равномерного слоя порошка на подложке с последующим сплавлением порошка в сформированном слое при помощи лазера. Этой технологии достаточно точно соответствует термин «селективное лазерное сплавление» (SLM, Selective Laser Melting).

Второй вид, о котором пойдет речь в статье — Direct Deposition — прямое осаждение материала из газопорошковой струи металлических частиц. Струя частиц подается непосредственно в ту же область, куда подводится энергия лазера. Лазерный луч оплавляет участок выращиваемого изделия, образуя локальную ванну жидкого расплава. В расплав струей инертного транспортирующего газа (чаще всего высокочистого аргона) вдувается порция металлического порошка. Чем-то это напоминает струйный принтер для бумаги или аэрограф художников-оформителей.

Лазерное выращивание — мировой опыт

Основной рабочий орган машин для лазерного выращивания — лазерная головка. Это чрезвычайно сложный агрегат, в котором расположены система фокусировки лазера, система охлаждения, система подачи материала, а также элементы системы управления (датчики, видеокамеры и т. д.). В процессе построения детали необходимо согласовать несколько параметров: мощность лазера, размер пятна расплава, интенсивность подачи материала, дисперсность порошкового материала, скорость движения головки. Одновременно необходимо обеспечить точную фокусировку подачи газопорошковой струи в зону расплава. Чтобы сопло меньше изнашивалось высокоскоростным абразивным потоком, используются вставки из карбидных износостойких сплавов (это, например, карбид вольфрама на кобальтовой связке). В зависимости от сочетания параметров коэффициент использования порошкового материала может варьировать от 0,2 до 0,9, то есть от 20 до 90% материала, поступившего через сопла системы подачи, фактически формируют деталь. Последнее обстоятельство ставит вопрос о вторичном использовании «пролетевшего мимо» порошка. Этот порошок можно собирать, просеивать от крупных (слипшихся) частиц и использовать повторно.

Однако за счет увеличения количества оксидов механические свойства выращенных из «повторного» порошка изделий ухудшаются в среднем на 10-15%. Ключевые факторы прямого лазерного выращивания, установленные во многих лабораториях, такие: скорость осаждения (0,2 кг/час для стенки толщиной 1 мм до 4 кг/час для стенки толщиной 1 мм), очень низкая пористость детали, геометрическое совершенство (резко падает для стенок толщиной 3-4 мм вследствие перегрева слоев, но можно улучшить водяным охлаждением). Особенно важны мощность лазера и диаметр луча в фокусе. Как пояснил «Науке» Константин Бабкин из Санкт-Петербургского политехнического университета Петра Великого, «мощность лазера у всех примерно одинаковая — порядка 2, изредка 3 кВт. Лазеры волоконные компании IPG (иногда — диодные фирмы laserline). Порошковые питатели либо собственной разработки, либо покупные (а они все одинаковые, по одному патенту сделанные).

Производительность разных 3D-принтеров тоже сильно зависит от выращиваемой геометрии. Например, если нужна толщина стенки в один проход 3 мм, то можно обеспечить производительность 1,5 кг/ч (на стали). Но это не значит, что установки компании BeAM machines, которые делают стенку 1 мм с производительностью 0,1 кг/ч, плохие. Просто тонкую стенку дольше выращивать». Особенностью установок по выращиванию из металлических порошков является сложность кинематики (сколько осей одновременно задействовано — 3, 5 или больше). От этого зависит изощренность выращиваемых изделий. При этом наблюдается жесткая конкуренция между двумя инженерными подходами: рука-робот или так называемый картезианский рабочий стол (рука-робот перемещается по сложной искривленной траектории, а конечный рабочий элемент картезианского стола — по каждой из координатных осей отдельно). Нетривиальной задачей является программное обеспечение: написать CAM (computer-aided manufacturing — программный комплекс для установки) и заложить в него стратегии, которые все оси смогут задействовать. Разумеется, спрос имеют и упрощенные варианты. Например, у компании INSSTEK принтер предназначен для выращивания и ремонта пресс-форм, поэтому и машина у них скорее 2,5D, да и производительность невелика, около 50 граммов в час.

Лазерное выращивание — российские разработки

В России технологиями выращивания металлических деталей занимаются несколько научно-технических центров в Москве и области, Воронеже, Санкт-Петербурге, Самаре, Уфе и некоторых других городах. Научные исследования ведутся по пяти направлениям: устройства для лазерного выращивания; металлические порошки; способы выращивания, контроля и управления, программное обеспечение 3D-технологий; формирование структуры выращиваемых изделий. В России наибольших научных успехов в изучении прямого лазерного выращивания металлических деталей добился Институт лазерных и сварочных технологий — ИЛИСТ при СПбПУ. Научно-исследовательские работы ведутся в кооперации с НИТУ МИСиС, Самарским национальным исследовательским университетом имени академика С.П. Королева, ПАО «Кузнецов» (Самара) и ОАО «Объединенная двигателестроительная корпорация» (Москва). Основной задачей проекта является создание научно-технических основ для промышленного освоения технологии прямого лазерного выращивания рабочих узлов и элементов авиационных двигателей с повышенными эксплуатационными характеристиками и рабочим ресурсом. Разрабатываемые решения должны обеспечить повышение эффективности процесса изготовления деталей авиадвигателей, в том числе за счет снижения материалоемкости и увеличения производительности технологического процесса.

Поле исследований — выращивание точных заготовок крупногабаритных изделий (до 1,6 м диаметром) при контролируемой атмосфере аргона в камере.

Толщина одиночной стенки составляет от 0,8 до 3 мм (в перспективе до 15 мм). Основными материалами являются стали, никелевые и титановые сплавы. Желательно разработать подходы к выращиванию градиентных металлических структур (то есть деталей, состав материала которых непрерывно меняется в объеме). Для улучшения экономических показателей предусматривается интеграция в одну машину дополнительных технологий — сварки, термоупрочнения, резки, шлифовки. Группа исследователей ИЛИСТ во главе с Г.А. Туричиным в 2014-2016 годах провела теоретические и экспериментальные исследования, математическое и компьютерное моделирование процессов, протекающих при прямом лазерном выращивании. Построенная математическая модель процесса переноса порошка позволила установить связь структуры газопорошковой струи с расходом транспортного газа, размерами сопла и параметрами частиц порошка. Проект выполнен при поддержке Минобрнауки России: ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы», идентификатор ПНИЭР — RFMEFI5814X0010. В 2016 году изготовлены и испытаны две лабораторных установки лазерного выращивания: 1) на базе дискового лазера мощностью 3 кВт; 2) на базе волоконного лазера ЛС-5 мощностью 5 кВт. В качестве манипулятора технологической головки и изделия использовался высокоточный шестиосевой промышленный робот с двухкоординатным позиционером.

Лазерное выращивание — области применения

Разрабатываемые технологии и оборудование прямого лазерного выращивания имеют широкую направленность и способны повлиять на развитие нескольких отраслей экономики. Кроме предприятий двигателестроения, потребителями разрабатываемой продукции может быть ракетно-космическая отрасль, транспортное, судовое и энергетическое машиностроение, а также медицина. Результаты проекта также могут быть использованы при разработке и модернизации родственных технологий инженерии поверхности. Это, в частности, технологии лазерной порошковой наплавки поверхностных слоев, актуальные для атомной, нефтегазовой, нефтехимической, химической отраслей промышленности.

Источник: https://www.kommersant.ru/doc/3256048

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top