Восстановление деталей индустриальных двигателей методом прямой лазерной наплавки

Научная библиотека Комментарии к записи Восстановление деталей индустриальных двигателей методом прямой лазерной наплавки отключены

В.О. Негодяев, К.В. Никитин // сборник ХLIX Самарская областная студенческая научная конференция. Тезисы докладов. Санкт-Петербург, 2023. С. 371-372.

Обоснование. Прямая лазерная наплавка является одним из наиболее перспективных методов восстановления и ремонта деталей газотурбинных двигателей. Исследование процессов формирования структуры и свойств наплавленного материала из дисперсионно-твердеющего никелевого сплава позволит увеличить номенклатуру и качество восстанавливаемых деталей на предприятиях машиностроительной отрасли.

Цель — отработка технологии восстановления деталей газотурбинных двигателей методом прямой лазерной наплавки.
Методы. Проанализированы основные виды износа лопаток и валов газотурбинных двигателей в составе газоперекачивающих агрегатов. Проведен сравнительный анализ основных ремонтных технологий, применяемых в ПАО «ОДК-Кузнецов».

Для восстановления детали типа «Вал КВД» была подобрана металлопорошковая композиция марки ЭП648. Отработка прямой лазерной наплавки производилась на пластинах и образце-имитаторе из жаропрочного сплава на никелевой основе марки ЭП718. После наплавки образцы подверглись термообработке в аргоне при температуре 700 °С в течение 8 часов с целью снятия остаточных напряжений.

Металлографическое исследование проводилось на шлифах, изготовленных на расстоянии 15 и 30 мм от торца пластины. Травление проводилось в реактиве Васильева (CuS04 — 5 г, H2S04 — 1,4 мл, НС1 — 50 мл, Н20 — 40 мл) в течение 1,5 часов.
Результаты. Металлографическое исследование проводилось на долевых и поперечных шлифах. При макроанализе установлено, что наблюдается четкая граница между материалом наплавки и основным матери- алом образца. Дефектов в виде несплошностей на границе не обнаружено. В наплавке имеются единичные поры размером до 0,1 мм. Микроанализ подтвердил значительное уменьшение количества пор в материале наплавки и отсутствие дефектов на границе с основным материалом образца (рис. 1).
Замер микротвердости проводился с нагрузкой P = 50 г. Микротвердость основного материала образца составила 381–397 HB. Микротвердость наплавки у поверхности 495–519 НВ, далее снижалась до 352– 397 НВ. Глубина повышенной микротвердости у поверхности обусловлена наклепом материала при алмазном

Рис. 1. Микроструктура в долевом сечении
выглаживании и составляет 0,1 мм [1]. Отработанный режим наплавки был апробирован при ремонте вала компрессора высокого давления после эксплуатации. На данный момент вал установлен на испытательный стенд и проходит длительные испытания [2].

Выводы. Технология прямой лазерной наплавки позволяет восстанавливать деталь типа «Вал КВД» с минимальным количеством дефектов. Для повышения качества наплавленных деталей необходима отработка режимов наплавки с последующей паспортизацией. Для уменьшения трудоемкости процесса отработки режимов наплавки необходимо исследовать основные закономерности формирования структуры и свойств наплавленного материала
Ключевые слова: ремонтные технологии; прямая лазерная наплавка; порошковые материалы; металлографическое исследование; жаропрочные сплавы.

Список литературы
Лихобабина Н.В., Королев А.А. Упрочнение поверхностей алмазным выглаживанием // Вестник Саратовского государственного технического университета. 2008. Т. 1, № 1. С. 17–24.
Мешков А.А., Негодяев В.О. Применение технологии прямой лазерной наплавки при восстановлении вала компрессора высокого давления наземной газотурбинной установки // XIV Всероссийский межотраслевой молодежный конкурс научно-технических работ и проектов: «Молодежь и будущее авиации и космонавтики»; Ноябрь, 21–25, 2022; Москва. Москва: Перо, 2022. С. 192–193.

Сведения об авторах:
Вадим Олегович Негодяев — аспирант, группа 1-УПНК-2.6.17, факультет машиностроения, металлургии и транспорта; Самарский государ- ственный технический университет, Самара, Россия. E-mail: vadim031198@gmail.com
Константин Владимирович Никитин — научный руководитель, доктор технических наук, профессор; профессор кафедры «Литейные и высо- коэффективные технологии»; Самарский государственный технический университет, Самара, Россия. E-mail: tlp@samgtu.ru

Опубликовано в: В сборнике: ХLIX Самарская областная студенческая научная конференция. Тезисы докладов. Санкт-Петербург, 2023. С. 371-372.

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top