Кремниевые наноантенны развернули свет

Кремниевые наноантенны развернули свет

Новости науки и техники Комментариев к записи Кремниевые наноантенны развернули свет нет

Коллектив физиков из Университета ИТМО, МФТИ и Техасского университета в Остине разработал устройство необычной наноантенны, способной рассеивать свет в желаемом направлении в зависимости от интенсивности падающего излучения. Результаты открывают дорогу к гибкой обработке оптической информации в телекоммуникационных системах.

Фотоны – переносчики электромагнитного излучения или кванты света – не обладают массой и электрическим зарядом. По этой причине светом относительно тяжело управлять, в отличие от, например, электронов. Их движением  в электронных структурах  управляют, прикладывая постоянное электрическое поле. Тем не менее, такие устройства, как наноантенны, позволяют добиться определенной степени контроля при распространении электромагнитных волн.

Одной из задач, для которых требуется «продвинутое» управление светом, является создание оптических компьютеров. В этих устройствах переносчиком информации являются не электроны, а фотоны. Использование света вместо заряженных частиц позволит в перспективе увеличить скорость передачи и обработки информации на порядки. Для реализации подобных вычислительных устройств требуются особые наноантенны, характеристиками которых можно управлять каким-либо образом, например, постоянным электрическим или магнитным полем или интенсивностью падающего света.

Рисунок 1. Схематическое изображение нелинейного рассеяния света на димере двух кремниевых частиц с изменяемой диаграммой направленности.

В своей работе, опубликованной в Laser & Photonics Reviews, исследователи разработали устройство новой нелинейной наноантенны, которая позволяет изменять направление рассеяния света в зависимости от интенсивности падающей волны (Рис. 1). Основой предлагаемой наноантенны служат кремниевые наночастицы, в которых под действием интенсивного лазерного излучения происходит генерация электронной плазмы. Авторы уже демонстрировали возможности таких наночастиц для нелинейного и сверхбыстрого управления светом (об этом мы писали ранее). Тогда исследователям удалось управлять долей света, рассеянной вперед и назад. Теперь ученые смогли повернуть рассеянный пучок света в желаемую сторону в зависимости от интенсивности падающего света.

Tuning of near- and far-field properties of all-dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation

All-optical ultrafast signal modulation and routing by low-loss nanodevices is a crucial step towards an ultracompact optical chip with high performance. Here, we propose a specifically designed silicon dimer nanoantenna, which is tunable via photoexcitation of dense electron-hole plasma with ultrafast relaxation rate. On the basis of this concept, we demonstrate the effect of beam steering by up to 20 degrees through simple variation of the intensity of incident light. The effect, which is suitable for ultrafast light routing in an optical chip, is demonstrated both in the visible and near-IR spectral regions for silicon- and germanium-based nanoantennas. We also reveal the effect of electron-hole plasma photoexcitation on the local density of states (LDOS) in the dimer gap and find that the orientation averaged LDOS can be altered by 50%, whereas modification of the projected LDOS can be even more dramatic, almost five-fold for transverse dipole orientation. Moreover, our analytical model sheds light on the transient dynamics of the studied nonlinear nanoantennas, yielding all temporal characteristics of the suggested ultrafast nanodevice. The proposed concept paves the way to the creation of low-loss, ultrafast, and compact devices for optical signal modulation and routing.

http://onlinelibrary.wiley.com/doi/10.1002/lpor.201600164/full

Для поворота диаграммы направленности наноантенны авторы воспользовались механизмом генерации плазмы в кремнии. Наноантенна представляет собой димер — две кремниевые наносферы различных диаметров. При облучении слабым лазерным пучком рассеяние света на такой антенне происходит в сторону вследствие несимметричной геометрии (голубая диаграмма на Рис. 2а). Диаметры наночастиц выбраны так, что на длине волны лазера одна из них является резонансной.  При облучении мощным лазерным импульсом в ней происходит интенсивная генерация электронной плазмы, что приводит к изменению оптических свойств этой частицы. Другая же частица – нерезонансная, и мощное поле лазера почти не влияет на ее свойства. Говоря грубо, при правильном выборе размеров двух частиц и параметров падающего пучка (длительности и интенсивности), размеры частиц становятся эффективно «одинаковыми», и антенна переизлучает свет вперед (красная кривая на Рис. 2а).

Рисунок 2. Результаты моделирования нелинейного рассеяния света на наноантенне из двух кремниевых частиц.

«Существующие оптические наноантенны позволяют управлять светом в достаточно широких пределах. Однако, это ”умение” обычно “зашито” в их геометрии и материалах, из которых сделана антенна, и простое изменение этих характеристик невозможно, — комментирует открытия аспирант МФТИ, один из авторов работы, Денис Баранов. —Наноантенна, которую мы разработали, позволяет динамически управлять своими свойствами. Когда вы светите на нее слабым импульсом — получаете один результат, а с сильным лазерным импульсом получаете совершенно другое поведение!».

Для получения более полной картины ученые провели численное моделирование описанного механизма, Рис. 2б. При облучении слабым лазерным пучком рассеяние происходит вбок и направление излучения практически не меняется за время действия импульса (голубая кривая). Если же облучать наноантенны интенсивным лазером, который приводит к генерации электронной плазмы, происходит поворот диаграммы на 20 градусов (красная кривая). Таким образом, появляется возможность отклонять в различные направлений слабый и сильный падающие импульсы.

Старший научный сотрудник кафедры Нанофотоники и метаматериалов Университета ИТМО Сергей Макаров резюмирует:«В данной работе мы сфокусировались на разработке наноразмерного оптического чипа размером менее чем 200х200х500 нм, то есть в разы меньше длины волны фотона, носителя информации. Новый элемент позволит менять направление распространения световых импульсов со скоростью в сотни раз большей по сравнению с электронными аналогами. Наше устройство может позволить распределять сигнал в два оптических канала с чрезвычайно коротким интервалом, что очень важно для современных систем телекоммуникации».

Сегодня информация по оптоволокну передается с рекордными скоростями, до сотен Гбит/с. Однако ныне существующая электроника обрабатывает такой сигнал со скоростями всего лишь в несколько Гбит/с для одного элемента. Создание нелинейных оптических наноантенн позволит решить эту проблему. Быстродействие предложенной авторами антенны достигает 250 Гбит/с. Это откроет дорогу к сверхбыстрой обработке оптической информации. Нелинейная антенна, разработанная исследователями, предоставляет еще больше возможностей для управления светом на наномасштабе, которое необходимо для реализации  фотонных компьютеров и различных устройств.

Источник: https://mipt.ru/newsblog/lenta/novyy_povorot_kremnievye_nanoantenny_razvernuli_svet

 


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2016
Напишите нам:
laser.w@yandex.ru

Back to Top