Насколько сложно покорить квантовую природу вещества?

Новости науки и техники Комментариев к записи Насколько сложно покорить квантовую природу вещества? нет

Мэтт Трушейм включает рубильник в темной лаборатории, и мощный зеленый лазер подсвечивает крошечный алмаз, удерживаемый на месте под объективом микроскопа. На экране компьютера появляется изображение, диффузное газовое облако, усеянное яркими зелеными точками. Эти светящиеся точки — крошечные дефекты внутри алмаза, в которых два атома углерода заменены одним атомом олова. Свет лазера, проходя через них, переходит из одного оттенка зеленого в другой.

В последнее время исследователи обнаружили, что обстреливание материала высокоинтенсивным лазером также может сбивать электроны в куперовские пары, пусть и ненадолго. Андреа Каваллери из Института строения и динамики материи Макса Планка в Гамбурге, Германия, и его коллеги обнаружили признаки фотоиндуцированной сверхпроводимости в металлах и изоляторах. Свет, поражая материал, заставляет атомы вибрировать, и электроны ненадолго входят в состояние сверхпроводимости. «Встряска должна быть ожесточенной», говорит Дэвид Эси, физик конденсированных веществ в Калифорнийском технологическом институте, который использует такую же лазерную технику для проявления необычных квантовых эффектов в других материалах. «На мгновение электрическое поле становится очень сильным — но только на короткое время».

Электрон в азотозамещенной вакансии поддерживает свой спин достаточно долго — около секунды — что увеличивает шансы на то, что свет лазера пройдет через него и произведет запутанный фотон. Но атом азота маленький и не заполняет пространство, созданное отсутствием углерода. Поэтому последовательные фотоны могут быть слегка разных цветов, а значит, и потеряют соответствие. Другие атомы, олово, например, прилегают плотно и создают стабильную длину волны. Но они не смогут удерживать спин достаточно долго — следовательно, ведется работа по поиску идеального равновесия.

Рассеченные концы
Пока Энглунд и другие пытаются совладать с отдельными электронами, другие ныряют еще глубже в квантовый мир и пытаются манипулировать уже долями электронов. Эта работа уходит корнями в эксперимент 1982 года, когда ученые из Лаборатории Белла и Национальной лаборатории Лоуренса Ливермора сделали сэндвич из двух слоев разных полупроводниковых кристаллов, охладили их почти до абсолютного нуля и применили к ним сильное магнитное поле, заточив электроны в плоскости между двумя слоями кристаллов. Так сформировался своего рода квантовый бульон, в котором движение любого отдельного электрона определялось зарядами, которые он ощущал от других электронов. «Это уже не отдельные частицы сами по себе», говорит Майкл Манфра из Университета Пердью. «Вообразите себе балет, в котором каждый танцор не только делает собственные па, но и реагирует на движение партнера или других танцоров. Это в некотором роде общий ответ».

Странно во всем этом то, что у такой коллекции могут быть дробные заряды. Электрон — это неделимая единица, ее не разрежешь на три части, но группа электронов в нужном состоянии может произвести так называемую квазичастицу с 1/3 заряда. «Будто электроны делятся на части», говорит Мохаммед Хафези, физик из Joint Quantum Institute. «Это очень странно». Хафези создал этот эффект в сверххолодном графене, одноатомном слое углерода, и недавно показал, что может манипулировать движением квазичастиц, подсвечивая графен лазером. «Теперь это контролируется», говорит он. «Внешними узелками, такими как магнитным полем и светом, можно управлять, подтягивать или распускать. Меняется природа коллективных изменений».

Манипуляции с квазичастицами позволяют создать особый тип кубита — топологический кубит. Топология — это область математики, изучающая свойства объекта, которые не меняются, даже если этот объект скручивается или деформируется. Стандартный пример — пончик: если бы он был идеально эластичным, его можно было бы переформировать в кофейную чашку, ничего особо не меняя; дырка в пончике будет играть новую роль в отверстии в ручке чашки. Однако, чтобы превратить пончик в крендель, придется добавить ему новых дыр, меняя его топологию.

Топологический кубит сохраняет свои свойства даже при изменяющихся условиях. Обычно частицы меняют свои квантовые состояния, или «декогерируют», когда нарушается что-то в их окружении, вроде небольших вибраций, вызванных теплом. Но если вы сделаете кубит из двух квазичастиц, разделенных некоторым расстоянием, скажем, на противоположных концах нанопроволоки, вы по сути расщепите электрон. Обе «половинки» должны будут испытать одно и то же нарушение, чтобы декогерировать, а такое маловероятно, что произойдет.

Это свойство делает топологические кубиты привлекательными для квантовых компьютеров. Из-за способности кубита быть в суперпозиции множества состояний одновременно, квантовые компьютеры должны быть способными производить практически невозможные без них вычисления, например, моделировать Большой Взрыв. Манфра, по сути, пытается создать квантовые компьютеры из топологических кубитов в Microsoft. Но есть и более простые подходы. Google и IBM, по сути, пытаются создать квантовые компьютеры на основе переохлажденных проводов, которые становятся полупроводниками, или ионизированных атомов в вакуумной камере, удерживаемых лазерами. Проблема таких подходов в том, что они в большей степени чувствительны к изменениям окружающей среды, чем топологические кубиты, особенно если число кубитов растет.

Таким образом, топологические кубиты могут привести к революции в нашей способности манипулировать крошечными вещами. Однако есть одна существенная проблема: их пока не существует. Исследователи изо всех сил пытаются создать их из так называемых майорановских частиц. Предложенная Этторе Майораной в 1937 году, эта частица является сама себе античастицей. Электрон и его античастица, позитрон, имеют идентичные свойства, кроме заряда, но заряд майорановской частицы будет равен нулю.

Источник: http://www.nanonewsnet.ru/articles/2018/naskolko-slozhno-pokorit-kvantovuyu-prirodu-veshchestva


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2016
Напишите нам:
laser.w@yandex.ru

Back to Top