Лазерно-индуцированные волны просветления и потемнения в стеклокерамике

Научная библиотека Комментариев к записи Лазерно-индуцированные волны просветления и потемнения в стеклокерамике нет

В. П. ВЕЙКО, Е. А. ШАХНО, Е. Б. ЯКОВЛЕВ, Б. Ю. НОВИКОВ, Санкт-Петербургский государственный университет
информационных технологий, механики и оптики // ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2008. Т. 51, № 4, с: 5-13, УДК 536.42; 539.213.27

Аннотация:

Показано, что при воздействии на стеклокерамику лазерного излучения с длиной волны, на которой исходная поликристаллическая фаза непрозрачна, а соответствующая стеклофаза прозрачна, за счет лазерно-индуцированного структурно-фазового перехода из кристаллического состояния в аморфное (и обратно) возможна ситуация, при которой под действием непрерывного излучения в среде возникает режим автоколебательных изменений прозрачности, и соответственно в ней распространяются волны просветления и потемнения.

Введение. Известно, что лазерный нагрев стеклокерамики приводит к изменению ее структурно-фазового состояния [1]. Локальная аморфизация (стеклование) стеклокерамики, находящейся в кристаллической фазе, приводит к локальному изменению ее свойств — физических (в частности, плотности) и оптических (в частности, прозрачности в видимом и ближнем ИК-диапазонах), что создает широкие перспективы для создания элементов фотоники и микрооптики [1, 2].
На рис. 1 приведены фотографии микролинзового растра, полученного в стеклокерамической пластине толщиной 0,6 мм методом локальной лазерной аморфизации. Режим обработки материала: плотность мощности излучения СО2-лазера 106 Вт/м2, начальная температура 600 °С; рис. 1, а — фотография внешнего вида, б и в — изображения, полученные при помощи данного растра. Возможность возвращения материала в исходную поликристаллическую фазу при повторном воздействии лазерного излучения (обратная кристаллизация) еще больше расширяет возможности этого метода и интерес к нему.

Эффект просветления и потемнения изучался и был подробно представлен в работах групп П. А. Скибы (см., например, [2]) и В. П. Вейко (см., например, [1]), в которых рассматривалось воздействие излучения СО2-лазера на ситалл СТ-50-1, приводящее к аморфизации (стеклованию) поликристаллического ситалла, а также к кристаллизации соответствующего стекла, находящегося в аморфном состоянии, при более мягких режимах облучения. Длина волны излучения СО2-лазера (10,6 мкм) лежит в области фундаментального поглощения силикатной стеклокерамики, поэтому поглощательная способность стеклокерамики на этой длине волны, практически одинаковая в аморфном и кристаллическом состоянии, весьма велика.

При воздействии на стеклокерамику излучения видимого и ближнего ИК-диапазона ситуация существенно изменяется. На рис. 2 представлена принципиальная схема роста аморфизированной области ситалла СТ-50-1 при воздействии излучения СО2 (а) и YAG:Nd-лазера (б), где кривая 1 — границы фонта аморфизации (оптической прозрачности); 2 — температура среды приблизительно равна температуре плавления; 3 — температура выше температуры плавления; 4 — зона поглощения излучения. Поглощательная способность стеклокерамики в кристаллическом состоянии вследствие сильного рассеяния достаточно велика, что приводит к быстрому разогреву облученной области. Однако по достижении температуры плавления вещество переходит в расплавленное стеклообразное состояние, и в области воздействия лазерного излучения его поглощательная способность уменьшается. В результате зона поглощения смещается к границе фронта просветления. Таким образом, резкое изменение оптических свойств материала приводит к радикальному изменению поглощения света, а также распределения падающего светового потока, температурного поля и кинетики структурных изменений. Кроме того, возникновение обратных связей между темпом разогрева и оптическими свойствами (поглощательной способностью и показателем поглощения) приводит к возникновению специфических термооптических эффектов.

Рассмотрению указанных особенностей фазовых переходов в ситалле под действием излучения YAG:Nd-лазера непрерывного действия и посвящена настоящая работа.

Эксперимент. Экспериментальное исследование было направлено на изучение кинетики пространственно-временных изменений прозрачности стеклокерамики — образование и распространение в ней волны просветления (и потемнения). Для исследования пространственных изменений в стеклокерамике использовалась схема, основанная на наблюдении через микроскоп и видеорегистрации явлений, происходящих в области воздействия излучения лазера на стеклокерамику. На рис. 3 представлена экспериментальная установка для исследования движения фронта просветления и временных изменений структуры стеклокерамики, где 1 — СО2- или YAG:Nd-лазер, 2 — затвор, 3 — He-Ne-лазер, 4 — измеритель мощности, 5 — диафрагма, 6 — зеркало, 7 — цифровой пирометр, 8 и 11 — ZnSe-линза, 9 — образец, 10 — подогреваемый координатный стол, 12 — фотоприемный элемент, 13 — осциллографическая приставка, 14 — микроскоп, 15 — видеокамера, 16 — компьютер.
Для исследования временных изменений структуры стеклокерамики применялась другая схема, реализованная на той же установке (рис. 3). Определение интенсивности лазерного излучения, проходящего сквозь зону модификации и падающего на фотодиод, позволяет судить о протекании процессов фазово-структурной перестройки. Измерение температуры и скорости нагрева и остывания материала при воздействии лазерного излучения производилось при помощи быстродействующего цифрового оптического микропирометра [3].

Исследование кинетики структурных изменений в стеклокерамике под действием излучения непрерывного YAG:Nd-лазера выявило ряд принципиальных отличий от случая применения излучения СО2-лазера. Одной из наиболее важных является возможность формирования аморфизированных областей большой глубины в ситалле (большей радиуса аморфизированной области) при использовании излучения YAG:Nd-лазера, что невозможно было получить с помощью СО2-лазера. Такое отличие определяется смещением зоны поглощения в глубь материала на границу фронта плавления—аморфизации— просветления по ходу луча под воздействием излучения YAG:Nd-лазера в отличие от чисто теплового воздействия с поглощением в поверхностном слое материала при воздействии излучения СО2-лазера.

Полное содержание статьи: http://pribor.ifmo.ru/file/journal/137.pdf

 

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top