Достигнута рекордная эффективность получения терагерцового излучения в жидкостях с помощью лазерной накачки

Лазеры в науке, Сделано в России Комментарии к записи Достигнута рекордная эффективность получения терагерцового излучения в жидкостях с помощью лазерной накачки отключены

Физики из Университета ИТМО улучшили метод преобразования оптического изучения в терагерцовое с помощью жидкости, что до недавнего времени считалось неперспективным. Они добились его рекордной эффективности в такой среде — до 0,1%. Эта работа может помочь терагерцовому излучению получить широкое применение. Сегодня доказано, что это излучение, в отличие от рентгеновского, безопасно для человека и применимо в медицине, системах безопасности, экологическом мониторинге, анализе предметов искусства и в пищевой промышленности. Исследования грантом Российского научного фонда (РНФ).

Varying pre-plasma properties to boost terahertz wave generation in liquids

Laser-driven nonlinear phenomena can both reveal the structural features of materials and become the basis for the development of various translated technologies, including highly intense terahertz sources. Here we realize a modified single-color double-pulse excitation scheme for enhancing the terahertz wave generation in flat liquid jets, and we show that the pre-ionization effect is crucial for finding the optimal input conditions.
https://www.nature.com/articles/s42005-020-00511-1

Терагерцовое (ТГц) излучение — вид электромагнитного излучения, спектр частот которого расположен между инфракрасным и микроволновым диапазонамию. Это соответствует длинам волн света от 3 миллиметров до 30 микрометров (то есть от 0,1 до 100 терагерц). Этой спектральной области соответствуют колебания, характерные для тяжелых молекул, в том числе органических, а также движения атомов кристаллов. днако устройства на основе ТГц излучения до сих пор не получили широкого применения. Дело в том, что мощность сигнала очень сильно снижается как в атмосфере, так и при прохождении через некоторые препятствия, особенно если они содержат влагу. В частности, после того, как ТГц сигнал преодолеет миллиметр солевого раствора (близкого по характеристикам к тканям человеческого тела), его мощность снизится в ~500 миллионов раз относительно первоначального значения.

Поэтому чтобы ТГц сканеры смогли заменить рентгеновские, необходимо создать мощные и компактные источники и чувствительные приемники излучения для ТГц спектрального диапазона. Ученые из Университета ИТМО смогли увеличить эффективность генерации ТГц излучения при использовании одного из видов его источников накачки — лазерного. Оптическое излучение — свет — вызывает генерацию ТГц поля при высокоинтенсивном (порядка 1013-14 Вт/см2) взаимодействии со средой. Во время филаментации лазерное излучение высокой интенсивности вызывает лавинную ионизацию среды, в объеме которой происходит отрыв электронов от атомов.

Электроны оказываются в высоковозбужденном состоянии и образуют плазменный канал на длине всего филамента. Филамент — это светящаяся нить, которая осталась после взаимодействия излучения со средой. Внутри этого канала генерируются различные виды излучения: оптическое, инфракрасное, рентгеновское и в том числе терагерцовое. На этот раз исследователи фокусировали лазерный луч не в газовой среде, как это делают обычно, а в жидкости. Проведенная работа позволила определить интересные физические закономерности в ходе двухимпульсного возбуждения различных жидкостей. Ученые показали, что усиление ТГц импульса для различных жидкостей происходит через несколько пикосекунд (10-12 секунды) после возбуждения первым импульсом и связано с временем жизни плазмы. Предположение о последнем исследователи подтвердили экспериментальными измерениями.

«Хочется отметить, что в перспективе результат в 0,1% может быть улучшен, если изменить рабочий диапазон длин волн лазера. Если сместить центральную длину волны при лазерной накачке в средний инфракрасный диапазон — до трех микрометров — эффективность достигнет еще более впечатляющих значений, порядка 1-5%. Таким образом, мы нашли оптимальные условия для высокоэффективной генерации терагерцовых волн в жидкостях. Наша работа — еще один важный шаг к будущему, в котором мощные и экономичные источники ТГц излучения получат широкое распространение», — комментирует Антон Цыпкин, доктор физико-математических наук, руководитель лаборатории фемтосекундной оптики и фемтотехнологий Международного института фотоники и оптоинформатики Университета ИТМО.

Источник: https://news.itmo.ru/ru/science/photonics/news/10089/

 

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top