Новая технология уменьшит потери на выходе из волоконного световода

Новая технология уменьшит потери на выходе из волоконного световода

Лазеры в науке, Новости науки и техники Комментарии к записи Новая технология уменьшит потери на выходе из волоконного световода отключены

Микрорельеф на поверхности торца волокна. Углубления расположены с периодом 3,4 мкм. Цветом обозначена глубина рельефа.Максимальное углубление — 3,7 мкм. Источник: Tarabrin et al. / Optical Materials Express, 2021? Фото: Optical Materials Express, 2021

Российские и немецкие ученые составили узор из микроуглублений

Чтобы повысить эффективность прохождения сигнала через оптоволокно, применяется его специальная модификация. Исследования российских и немецких ученых показали, что при помощи коротких лазерных импульсов можно создать микрорельеф на торце световода, благодаря чему пропускание энергии инфракрасного излучения увеличивается примерно на 5% на каждом из торцов.Разработанная технология обеспечивает снижение потерь в широком спектральном диапазоне, в перспективе можно достичь 99% пропускания излучения для заданной длины волны. Исследования поддержаны грантами Российского научного фонда.

Волоконные световоды сегодня используются в самых разных областях: от связидо медицины. Их можно применить везде, где необходимо передать излучение от источника к потребителю.Такое оптоволокно представляет собой относительно гибкую нить из твердого прозрачного материала. Поверхность ее стенок не пропускает свет наружу, и он проходит от одного конца световода до другого. Диаметр волокна — от единиц микрометров до единиц миллиметров,а длина может быть достаточной, чтобы обеспечивать связь даже между континентами.

Авторы новой работы заняты проблемой потери излучения на обратное отражение при вводе и выводе из оптоволокна. Для борьбы с этим эффектом ранее применяли специальные покрытия, которые используются, например, для просветления линз фототехники. Но этот подход плохо работает из-за неровности поверхности и разного коэффициента теплового расширения у волокна и покрытия. Авторы предлагают покрывать торец световода микрорельефом в виде узора из углублений микроскопических размеров. Такой подход позволяет значительно снизить потери на отражение в широком спектральном диапазоне.

«Используемые сейчас технологии нанесения микрорельефа несовершенны. Образец необходимо нагреть до пластичного состояния и отпечатать рисунок при помощи специальной пресс-формы. Нагрев и механическое воздействие могут легко повредить оптоволокно, а пресс-формы представляют собой негатив микрорельефа, потому создавать их необходимо с использованием других методов микрообработки, что увеличивает сложность и стоимость просветления. Наша технология менее “травматична” для волокна. В ней поверхность среза подвергается обработке короткими и мощными лазерными импульсами, каждый из которых выжигает аккуратный кратер. Диаметр и глубина таких кратеров составляют порядкаодного микрона — в 50 раз меньше толщины человеческого волоса. Применение высокоточных технологий позиционирования образцов и автоматики позволяет создать такой рельеф по всему торцу оптоволокна»,—рассказывает Михаил Тарабрин, кандидат технических наук, руководитель проекта по гранту РНФ, научный сотрудник лаборатории стабилизированных лазерных систем научно-образовательного центра «Фотоника и ИК-техника» МГТУ имени Н. Э. Баумана.

Авторы использовали волокна на основе соединения серебра с хлором и бромом AgClBr. Этот материал обладает выдающимися характеристиками для работы в инфракрасном диапазоне, однако очень пластичен и чувствителен к свету видимого диапазона, что не позволяет использовать для его просветления традиционные методы. В ходе работы образцы волокна обрезались специальным лезвием с очень тонким и острым краем. Далее они фиксировались в приспособлении для обработки лазером. Излучение подавалось в виде импульсов инфракрасного диапазона длительностью всего в 210 фемтосекунд.

За это время в пятно фокуса диаметром 1,77 микрона передавалось около двух микроджоулей энергии. Эта небольшая энергия, сконцентрированная в малом пятне, создавала для вещества в приповерхностном слое торца условия, экстремальные с точки зрения энергетики. Атомы поверхности волокна ионизировались посредством многофотонного возбуждения.

В результате этого процесса образовывался электронный газ, который ускорялся электрическим полем световой волны и обменивался энергией с окружающей кристаллической решеткой. Этот процесс происходит на временном масштабе, сопоставимом с длительностью возбуждающего импульса, а потому вещество нагревалось практически моментально и очень локально — процессы ионизации происходят только в пятне, где интенсивность достаточна для многофотонного возбуждения.

На конечном этапе происходит рекомбинация нагретого до нескольких десятков тысяч градусов электронного газа, собранная энергия передается кристаллической решетке материала, и происходят его взрывная фрагментация и испарение. В результате этого процесса (абляции) образовывался кратер размером, близким к диаметру светового пятна. Далее фокус установки перемещался по поверхности,и импульсы повторялись. Таким образом микроскопическими кратерами покрывался весь торец волокна.

Измерения пропускания оптического волокнавыявили, что эффект микрообработки торцов заметен в диапазоне длин волн от 7 до 14 микрометров. В среднем по диапазону пропускание поверхности увеличилосьс 87% до 92%. Полученные результаты пока не могут составить конкуренцию просветляющим покрытиям, используемым в индустрии оптоволоконной отрасли, но ониподтверждают успешность разрабатываемой технологии.

В тоже время микроструктурирование остается единственным приемлемым вариантом для просветления материалов с поверхностью,сложнойдля нанесения покрытий. В ближайших планах авторов — оптимизация обработки торцов оптоволокна и повышение коэффициента пропускания в более широком диапазоне излучения, в том числе до 99% для заданной длины волны.

В работе также участвовали: компания Art Photonics GmbH (Германия),Технический университет прикладных наук Вильдау (Германия), Новосибирский государственный университет, Берлинский технический университет (Германия).

Использованы материалы статьи «Fabrication of an Antireflection Microstructure on AgClBr Polycrystalline Fiber by Single Pulse Femtosecond Laser Ablation»; Mikhail K. Tarabrin, Andrey A. Bushunov, Andrei A. Teslenko, Tatiana Sakharova, Jonas Hinkel, Iskander Usenov, Torsten Dоhler, Ute Geiler, Viacheslav Artyushenko, Vladimir A. Lazarev; журнал Optical Materials Express, февраль 2021 г.

Источник: https://www.kommersant.ru/doc/4692407

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top