В Университете ИТМО создали камеру с разрешением в квадриллионные доли секунды

В Университете ИТМО создали камеру с разрешением в квадриллионные доли секунды

Новости науки и техники Комментариев к записи В Университете ИТМО создали камеру с разрешением в квадриллионные доли секунды нет

Ученые из Университета ИТМО собрали установку, которая с фемтосекундной скоростью снимает голограммы с мельчайших объектов – например, живых клеток. Новая камера воссоздает рельеф изучаемого образца по искажению лазерного импульса, прошедшего сквозь него, и способна визуализировать даже прозрачные биоструктуры без введения в них контрастных веществ, с чем не справляются электронные микроскопы. Работа опубликована в журнале Applied Physics Letters.

Time-resolved image plane off-axis digital holography
In this work, we demonstrate off-axis image-plane digital holography for measuring ultrafast processes with high temporal resolution. The proposed image-plane holographic configuration in conjunction with numerical post-processing procedures allows us to neglect the walk-off effect in the off-axis arrangement by synthesizing spatial phase distribution with the whole field of view from separate fragments and to increase the spatial resolution by means of a telecentric system with adjustable magnification. We have analyzed temporal resolution taking into account all dispersing elements that increase the duration of the pulses being propagated through the optical setup. The technique was approved with experiment on measuring the dynamics of the refractive index, induced by laser filamentation in air.
http://aip.scitation.org/doi/abs/10.1063/1.4981899?journalCode=apl

Каждую секунду в живых клетках происходит до ста миллиардов биохимических реакций и физических процессов. Их регистрация требует высокого временного разрешения. Чтобы заснять настолько быстрые превращения нужны очень точные и не менее быстрые устройства. Биологическую ткань можно изучать с помощью электронного микроскопа, но для этого понадобится ввести в нее специальный краситель. Он сделает клетки контрастными, хотя может повлиять на их метаболизм. Цифровые голографические микроскопы лишены этого недостатка, но обладают малым пространственным разрешением.

Новая установка, собранная в Университете ИТМО, способна вести съемку быстропротекающих процессов в прозрачных образцах и позволяет увеличивать разрешение снимков в широких пределах. Прибор записывает фазовые деформации сверхкоротких, или фемтосекундных, лазерных импульсов, возникающие, когда свет проходит сквозь исследуемый объект. Фазовые изображения, или голограммы, помогут исследовать клетки, чтобы лучше понимать механизмы аутоиммунных, онкологических, нейродегенеративных заболеваний, а также отслеживать эффективность противораковой терапии.

«Наша установка позволит проследить за тем, что происходит внутри живой клетки, с временным разрешением порядка 50 фемтосекунд – этого достаточно, чтобы заснять большинство биохимических реакций. Теоретически, такая камера способна запечатлеть даже переход электрона на другую орбиту. Но главное, теперь мы можем изучать жизнедеятельность клеток не пассивно, а инициируя в них определенные процессы. Например, нагревая или перемещая вирусы, отдельные клетки и их структуры в пространстве с помощью фемтосекундных импульсов. Прибор также поможет отслеживать состояние клеток при изменении кислотности среды, внесении и редактировании генетического материала», – комментирует разработку Арсений Чипегин, ведущий автор статьи и научный сотрудник лаборатории цифровой и изобразительной голографии Университета ИТМО.

Для анализа объекта фемтосекундный лазерный пучок расщепляют на три луча. Первый содержит 95% энергии и запускает процесс, который диагностируется двумя другими. Второй луч, называемый объектным, проходит сквозь исследуемый образец. Третий, опорный пучок, отклоненный зеркалами, огибает предмет. За образцом объектный и опорный лучи снова встречаются и формируют интерференционную картину из ярких полос, возникших там, где гребни световых волн наложились и усилили друг друга.

Регулируя положение зеркал, ученые задерживают опорный пучок, заставляя его встретиться с объектным в разное время – так опорный пучок сканирует луч, прошедший через образец. Столкновения пучков записываются на субголограммах, которые объединяются в одно изображение компьютерным алгоритмом, отличающимся простотой и быстродействием.

В качестве опытного объекта исследователи использовали искру (филомент), высеченную мощным лазерным импульсом из воздуха, а также специальное стекло с субмикронными включениями. В обоих случаях физики смогли получить снимки с высоким пространственным и временным разрешением.

Новое устройство снимает один из важнейших вопросов цифровой голографической микроскопии, связанный с повышением разрешающей способности системы еще на стадии записи голограммы.

«Технически мы можем увеличивать изображения исследуемых объектов в десятки раз, устанавливая увеличительные системы между объектом и камерой. Это не просто повышает разрешение – растет точность измерений, поскольку интерференционные полосы визуально становятся тоньше на фоне образца. Таким образом, можно точнее вычислить разность фаз объектного и опорного пучков», – говорит Николай Петров, руководитель лаборатории цифровой и изобразительной голографии Университета ИТМО.

Как сообщают ученые, исследования продолжатся, поскольку разработанная система устроена проще, чем многие современные микроскопы, но имеет ряд преимуществ в быстродействии и обработке голограмм.

Источник: http://news.ifmo.ru/ru/science/photonics/news/6754/

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top