Физики ЦЕРНа с помощью лазеров измерили спектр атомов антиматерии в 100 раз точнее

Новости науки и техники Комментариев к записи Физики ЦЕРНа с помощью лазеров измерили спектр атомов антиматерии в 100 раз точнее нет

Коллаборация ALPHA исследовала такие эффекты для атомов антиводорода, которые в ЦЕРНе получают из антипротонов с помощью специальной установки — Антпротононного замедлителя (Antiproton Decelerator), где они связываются с позитронами из пучка ионов натрия-22.

Готовые атомы антиводорода попадают в магнитную ловушку (Penning trap), которая не дает им соприкоснуться с обычной материей и аннигилировать. По форме такая ловушка напоминает вытянутую бутылку, бо́льшая часть антиматерии находится около ее оси. Затем антиатомы облучают лазером, чье воздействие переводит позитроны на более высокий энергетический уровень, измеряют их реакцию и сравнивают с поведением атомов водорода.

В 2016 году ALPHA уже использовала этот подход для измерения частоты электронных переходов между состоянием с минимальной энергией и первым энергетическим уровнем (переход 1S — 2S) в атомах антиводорода с точностью две части на десять миллиардов (2×10−10).

Тогда измеренные значения хорошо совпали с характеристиками обычного водорода, однако точности измерений все-таки было недостаточно, чтобы в подробностях исследовать сверхтонкое расщепление энергетических уровней.

В этих измерениях ученые использовали излучение лазера двух разных длин волн: одна из них соответствовала переходу 1S—2S в водороде, а вторая — «сбивала настройку». При этом учитывалось число атомов, которые выпадали из ловушки в результате взаимодействия между лазером и атомом.

Теперь ALPHA разработала новый метод: в эксперименте использовался не один, а несколько «расстраивающих» лазеров с длинами волн, которые были несколько ниже или выше длины волны, соответствующей 1S—2S переходу в водороде. Это позволило ученым измерить спектральные линии перехода 1S—2S в антиводороде, а также подробно исследовать сверхтонкую структуру каждой из этих линий. В самом деле, каждый из энергетических уровней в результате сверхтонкого расщепления разделяется на два подуровня, которые можно обозначить буквами c и d (уровень d находится выше). Из-за этого частота переходов 2Sd → 1Sd и 2Sc → 1Sc будет немного отличаться от частоты «чистого» перехода 2S → 1S. На практике удобнее исследовать d—d переход, поскольку он слабее зависит от колебаний магнитного поля ловушки.

В результате ученые получили, что в антиводороде частота d—d перехода примерно равна f ≈ 2,4660611030794(54)×1015 Герц. В то же время, для атомов обычного водорода она составляет f ≈ 2,4660611030803(06)×1015 Герц. Цифрами в скобках здесь обозначена абсолютная погрешность измерений. Таким образом, спектральные характеристики атомов водорода и антиводорода совпадают с точностью около 2×10−12 (две триллионных) — это в 100 раз лучше, чем в 2016 году, и в целом укладывается в погрешность измерений. Другими словами, ученые снова не нашли отличий между материей и антиматерией.

«Мы пытались достичь этого уровня точности 30 лет и наконец добились этого», — говорит представитель коллаборации Джеффри Хангст (Jeffrey Hangst), слова которого приводятся в сообщении ЦЕРНа. Хотя этот уровень точности пока еще не достиг тех значений, которых удалось добиться для отдельных антипротонов, последние результаты ученых показывают, что вскоре они могут сравняться, и тогда это позволит провести беспрецедентный эксперимент по поиску нарушений CPT-симметрии.

Источник: https://nplus1.ru/news/2018/04/04/antimatter

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top