Экспериментальные исследования по формированию цветности на поверхности металлов лазерным излучением

Научная библиотека Комментарии к записи Экспериментальные исследования по формированию цветности на поверхности металлов лазерным излучением отключены

Притоцкий Е.М., Притоцкая А.П., Бурцев А.А., Панков М.А., Бутковский О.Я. // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 4. С. 581-587. doi: 10.17586/2226-1494-201818-4-581-587

Представлены экспериментальные исследования и способ формирования цветности на поверхности нержавеющей стали при воздействии импульсного лазерного излучения. Описаны методы расчета коэффициента отражения пленок оксида железа на железе. Произведен расчет зависимости коэффициента отражения от длины волны в видимом диапазоне и толщины оксидной пленки на поверхности маркируемой поверхности. Показано влияние толщины оксидной пленки на формируемый цвет поверхности за счет интерференции на системе пленок оксида железа и железа. Показано, как по мере увеличения угла падения функция отражения смещается влево и уменьшается ее амплитуда. По результатам растровой электронной микроскопии зафиксировано значительное увеличение содержания кислорода в местах воздействия, что указывает на образование оксидных пленок. Проведен анализ профиля полученных на поверхности металлов оксидных пленок, показана зависимость цветности модифицируемой поверхности от параметров лазерного излучения.

Введение

Маркировка выпускаемой продукции является одним из элементов современного технологичного производства. Маркировка детали или конечного изделия позволяет производителю контролировать объем выпускаемой продукции, ее качество, а также продвигать свою торговую марку. Из существующих способов маркировки наиболее технологичным, долговечным и точным является лазерная маркировка [1]. Одним из самых современных видов лазерной маркировки является создание на поверхности изделий цветных пленок — технология цветной лазерной маркировки (ЦЛМ). Помимо декоративного эффекта технология ЦЛМ обладает всеми преимуществами лазерной маркировки, в том числе высокой износостойкостью и разрешением получаемого изображения. Суть технологий нанесения цветных изображений на металлические поверхности заключается в изменении оптических свойств маркируемой области металла в видимом диапазоне длин волн.

В последние годы проявился определенный интерес к управлению оптическими свойствами поверхности путем лазерного окисления и структурирования поверхности металлов [2, 3]. Для нанесения цветных изображений на поверхность металла (рис. 1) применяются и другие технологии — термопечать, порошковая и химическая окраска [4, 5], но проведенный авторами работы [6] маркетинговый анализ показал, что технология ЦЛМ способна конкурировать с существующими технологиями.

За счет воздействия лазерного излучения на поверхности металла происходит локальный нагрев и формирование оксидных пленок, толщина которых зависит от параметров лазерного излучения и химических свойств поверхности металла. При изменении параметров лазерного излучения можно задавать определенную толщину оксидных пленок, которые непосредственно определяют структуру и оптические свойства поверхности металла после воздействия (цветность) [7].


Рис. 1. Примеры цветной маркировки металла, выполненной на маркере МиниМаркер 2 компании ООО «Лазерный центр»

Компьютерное моделирование оптических свойств оксидных пленок на металлах

Изменение оптических свойств трехслойной системы воздух-оксидная пленка-металл можно рассчитать методами компьютерного моделирования — матричным методом на основе формул Френеля [8] или методом FDTD2. Сравнительный обзор метода FDTD и частного метода для расчета энергетических коэффициентов тонкой поглощающей пленки на стекле авторами был представлен в работе [9]. Авторами был выбран первый способ, введена модельная функция волны электромагнитного поля для одной из

1 Цветная лазерная маркировка металлов [Электронный ресурс]. Режим доступа: http://www.newlaser.ru/tech/marking/color.php., свободный. Яз. рус. (дата обращения 20.05.2018).

2 Electromagnetic Template Library (EMTL) [Электронный ресурс]. Режим доступа: http://fdtd.kintechlab.com/ru/fdtd., свободный. Яз. рус. (дата обращения 14.04.2018).

Эксперименты и результаты

Для проверки компьютерной модели была осуществлена цветная маркировка нержавеющей стали марки А]Ш304 на маркере с подбором параметров лазерного излучения и исследованы физические и химические свойства поверхности металла методами атомно-силовой микроскопии (АСМ) и растрово-электронной микроскопии (РЭМ).

В настоящей работе для цветной маркировки использовался лазерный маркер ЬБе81^ег Б1. Данный комплекс построен на базе волоконного импульсного иттербиевого лазера с длительностью импульса 80 нс, мощностью до 10 Вт и частотой, изменяемой в диапазоне 20-100 кГц, и предназначен для лазерной маркировки изделий из металлов, металлов с покрытиями, твердых сплавов, пластиков и некоторых других материалов. Предварительно поверхность металла была отполирована и очищена от органических загрязнений, очищена обезжиривающим раствором, ацетоном, изопропиловым спиртом, деиони-зированной водой и просушена.

Маркировка осуществляется методом микрогравировки. Метод заключается в том, что сфокусированный лазерный луч с высокой плотностью излучения реализует локальный нагрев поверхности нержавеющей стали, что испаряет материал в месте маркировки. Следовательно, на нержавеющей поверхности возникает конкретный рельеф, глубина которого непосредственно зависит от мощности лазера и времени обработки. Высокая устойчивость функционирования лазерной установки и очень точное локальное распределение энергии лазерного излучения дают возможность на нержавеющей стали создавать эффект цветной маркировки, что напрямую зависит от температуры. Для регулировки температуры нагрева необходимо изменять параметры лазерного излучения — мощность, частоту следования импульсов и скорость перемещения луча.

В первом случае использовалось излучение мощностью 5 Вт, с частотой импульса 100 кГц и скоростью перемещения луча от 10 до 90 мм/с с шагом в 10 мм/с. В первую очередь был проанализирован образец № 2 со скоростью 20 мм/с, так как он дал ярко выраженный зеленый цвет.

В проведенном эксперименте ширина дорожек равна 45,7 мкм (рис. 4, а), максимальная высота неровностей достигает 2,1 мкм (рис. 4, б). Ширина микроканала — более 10 мкм (рис. 4, в), а значит, дифракции света в видимом диапазоне на такой яме быть не может. Такие предположения были сделаны авторами в работе [16]. За формирование зеленого цвета отвечает эффект интерференции на прозрачной тонкой пленке, образованной на поверхности металла.

Полное содержание статьи: https://cyberleninka.ru/article/n/eksperimentalnye-issledovaniya-po-formirovaniyu-tsvetnosti-na-poverhnosti-metallov-lazernym-izlucheniem

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.rf.mail@yandex.ru

Back to Top