Случайный волоконный лазер генерирует излучение благодаря рассеянию света.

Случайный волоконный лазер генерирует излучение благодаря рассеянию света.

Новости науки и техники Комментариев к записи Случайный волоконный лазер генерирует излучение благодаря рассеянию света. нет

В оптоволоконных системах связи информация передается светом, распространяющимся в кабеле из прозрачного материала. В настоящее время они получили широкое распространение. Наряду с большими достоинствами оптоволокно имеет и существенный недостаток – из-за рассеяния света в материале кабеля энергия излучения практически полностью теряется при прохождении расстояния порядка 100 км, поэтому через каждые 50-70 км на таких линиях стоят дорогостоящие усилители.

Однако некоторое время тому назад физики обратили внимание, что многократное рассеивание может приводить не только к потерям энергии, но и к усилению излучения. Построенные на этом эффекте устройства получили название случайные лазеры, поскольку рассеяние носит случайный характер. В качестве рабочего тела в них использовались, например, размолотые в порошок кристаллы. Их достоинство – в отсутствии резонатора, обязательного элемента традиционного лазера, требующего высокоточного изготовления.

Случайная лазерная генерация из-за рассеяния в волоконных световодах была открыта физиками из Новосибирска в 2010 году.

Рассеяние в них слабо, но происходит по всей длине кабеля, которая была велика, около 300 км, так что физикам удалось получить стабильный сигнал. До этого получить устойчивую случайную генерацию не удавалось из-за малости рассеяния в коротких световодах. Однако для практического применения физикам предстояло научиться управлять процессом и подобрать материал кабеля.

20 июля 2016 в статье, опубликованной в журнале Scientific Reports, российские физики сообщили, что им впервые удалось продемонстрировать случайный волоконный лазер на основе висмутового активного световода. В работе приняли участие физики из московского Научного центра волоконной оптики (НЦВО) РАН руководством академика Е.М. Дианова и новосибирского Института автоматики и электрометрии (ИАиЭ) СО РАН под руководством чл.-корр. РАН С.А. Бабина.

Narrowband random lasing in a Bismuth-doped active fiber

Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible.

http://www.nature.com/articles/srep30083

Материалы для световодов с добавлением висмута представляют собой новый тип активных сред, предложенный и активно развиваемый в НЦВО РАН, в основном для создания сверхширокополосных усилителей для оптоволоконных линий связи. Активными такие среды названы благодаря тому, что не только пропускают излучение, но и сами способны генерировать люминесцентное излучение, что и позволяет их использовать для усиления сигнала. Именно активные световоды, используемые и в обычных волоконных лазерах, наиболее оптимально подходят для использования в случайных лазерах, которые разрабатываются в Новосибирске. По сравнению с другими добавками повышение концентрации висмута ведёт к его кластеризации (образованию групп) и соответственно увеличению коэффициента рассеяния, что позволяет уменьшить необходимую длину волокна.

Получившийся в результате сотрудничества случайный волоконный лазер обладает не только компактной и простой схемой, но и уникальными выходными характеристиками. В частности, у него высокий коэффициент полезного действия по лазерной генерации, то есть велика доля рассеиваемой энергии превращающейся в лазерное излучение. Ширина спектра (диапазон частот) оказалась даже в 3 раза меньше, чем у обычного лазера с двухзеркальным резонатором в том же световоде. А это влияет на такой важный параметр как длина когерентности, определяющий как быстро в световоде колебания утрачивают согласованность. Исследователи также построили теоретическую модель работы такого лазера, объясняющую его свойства.

Помимо использования в системах связи подобные лазеры найдут применение для создания новых источников света, используемых в различных технологиях визуализации, например, в микроскопии, биомедицинской диагностике и лазерных дисплеях. Особенно важно то, что их спектр позволит улучшить чёткость получаемых изображений.

Источник: https://www.nkj.ru/news/29198/

Рекомендуем для Вас

Leave a comment

You must be logged in to post a comment.


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.w@yandex.ru

Back to Top