Поляризацию связали с цветом для сверхбыстрой спектроскопии

Поляризацию связали с цветом для сверхбыстрой спектроскопии

Лазеры в науке Комментарии к записи Поляризацию связали с цветом для сверхбыстрой спектроскопии отключены

Физики смогли ускорить спектроскопические измерения, скоррелировав длину волны каждой из компонент просвечивающего лазерного импульса с отдельной поляризацией. Это было сделано путем внесения фазового сдвига, зависящего от длины волны, между двумя сведенными вместе пучками с ортогональными поляризациями. Такой прием позволяет получать спектроскопическую информацию, измеряя только поляризацию света, что существенно увеличивает скорость детектирования. Исследование опубликовано в Optica.

Спектроскопия — важнейший метод физического эксперимента, который помогать как решать сугубо практические задачи, так и искать ответы на фундаментальные вопросы в физике. В его основе лежит анализ спектра света, испущенного либо поглощенного исследуемым объектом.

Классическая спектроскопия использует разделение световых пучков в пространстве в зависимости от их цвета (длин волн). Однако свет можно характеризовать бо́льшим количеством свойств. Например, помимо длины волны и направления в пространстве можно менять его временну́ю форму, поляризацию, волновой фронт и даже орбитальный момент. И если научиться связывать одну характеристику света с другой, то это можно использовать для новых режимов измерения и манипуляции свойствами вещества.

Физики из Финляндии и Канады под руководством Роберта Фиклера (Robert Fickler) из Университета в Тампере, Финляндия, продемонстрировали создание пучков света, в котором каждая спектральная компонента обладает уникальной поляризацией. Такие пучки были названы спектрально-векторными пучками. Спектрально-векторный свет можно использовать для проведения спектроскопического эксперимента, где измеряется не длина волны, а поляризация, что позволяет существенно ускорить процесс измерения.

Идея, лежащая в основе генерации спектрально-векторного света, основана на внесении фазового сдвига, зависящего от длины волны, между двумя, сведенными вместе пучками с ортогональными поляризациями. Самым простым способом сделать это оказалось введение временно́й задержки между пучками с помощью двулучепреломляющего кристалла, входя в который компоненты с разной поляризацией распространяются с разной скоростью. На выходе из кристалла компоненты будут иметь разность фаз, зависящую от длины волны, что выражается в различной поляризации результата их сложения. Связью длины волны с итоговой поляризацией можно управлять, меняя толщину кристалла и его ориентацию. Это свойство двулучепреломляющих кристаллов хорошо изучено и используется в волновых пластинках.

Чтобы реализовать описанную идею, авторы использовали титан-сапфировый лазер с длительностью линейно поляризованного импульса, равного 220 фемтосекундам. Его спектр имеет колоколообразную форму с центром на 808 нанометрах. В качестве двулучепреломляющего кристалла использовался двухмиллиметровый кристалл бета бората бария (BBO), разница между показателями преломления обыкновенного и необыкновенного лучей в котором составляет 0,12. Для управления поляризационным базисом генерируемых таким образом спектрально-векторных лучей физики использовали разнообразные волновые пластинки. Подбором параметров установки авторы добились того, что плоскость линейной поляризации поворачивается на 180 градусов от одного конца спектра до другого.

Схема экспериментальной установки. Волновые пластинки в блоке генерации (WP1) используются для манипуляции поляризационным базисом генерируемых лучей, а в блоке детектирования (WP2) – для манипуляции поляризационным базисом измерительной системы. Здесь PBS – поляризационный светоделитель, PD – светодиоды, BS – дополнительный светоделитель, сводящий сигнал с каналом сравнения. L. Kopf et al / Optica, 2021

В первую очередь физики убедились, что спектр такого луча можно восстановить, измеряя только поляризацию. Для этого они экспериментально связали параметры Стокса с длиной волны, откалибровав таким образом установку для различных поляризационных базисов. После этого авторы провели серию спектральных манипуляций над светом, которые симулировали три процесса: узкополосное пропускание, узкополосное поглощение и быстроизменяющийся длинноволновый фильтр.

Симуляция заключалась в добавлении поглощающей маски в Фурье-плоскость пучка. Другими словами, физики раскладывали свет в спектр с помощью дифракционной решетки, после чего с помощью линз выстраивали лучи всех длин волн параллельно друг другу. Заглушая ту или иную компоненту с помощью препятствий, расположенных перпендикулярно лучам, авторы имитировали поглощение на соответствующей длине волны, после чего собирали лучи обратно. Обработка измерений параметров Стокса вновь собранного пучка позволила достаточно точно определить сделанные в спектрах изменения.

Схема симуляции узкополосного пропускания. L. Kopf et al / Optica, 2021

В третьем случае роль маски играли лопасти винта, двигающегося в Фурье-плоскости со скоростью 25,6 метров в секунду. Такая преграда симулировала систему с быстро изменяющимся спектром. Физики смогли добиться временно́го разрешения, равного 166 наносекундам (6 мегагерц). Авторы отмечают, что скорость измерения ограничивалась частотой повторения лазерных импульсов и временами отклика электроники в установке, и при оптимизации данных параметров она может достигать гигагерц.

В заключении исследователи отмечают, что представленная ими установка имеет ограничения при использовании ультракоротких импульсов со сверхшироким спектром (супеконтинуума). Несмотря на это, метод может быть расширен и для таких лазеров. Авторы провели численную симуляцию и вывели параметры, которые могли бы быть использованы для экспериментальной реализации приложенной идеи с супеконтинуумом.

Улучшение временно́го разрешения приборов позволяет узнать гораздо больше о веществе. Мы уже рассказывали, как благодаря этому физики увидели распределение энергии при фотосинтезе и засняли разрыв молекулы в высоком разрешении.

Марат Хамадеев

Источник: https://nplus1.ru/news/2021/06/23/polarize-color

Рекомендуем для Вас


© Интернет журнал "ЛАЗЕРНЫЙ МИР", 2019
Напишите нам:
laser.w@yandex.ru

Back to Top